skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2027389

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The cytoskeleton has a central role in eukaryotic biology, enabling cells to organize internally, polarize, and translocate. Studying cytoskeletal machinery across the tree of life can identify common elements, illuminate fundamental mechanisms, and provide insight into processes specific to less‐characterized organisms. Red algae represent an ancient lineage that is diverse, ecologically significant, and biomedically relevant. Recent genomic analysis shows that red algae have a surprising paucity of cytoskeletal elements, particularly molecular motors. Here, we review the genomic and cell biological evidence and propose testable models of how red algal cells might perform processes including cell motility, cytokinesis, intracellular transport, and secretion, given their reduced cytoskeletons. In addition to enhancing understanding of red algae and lineages that evolved from red algal endosymbioses (e.g., apicomplexan parasites), these ideas may also provide insight into cytoskeletal processes in animal cells. 
    more » « less