skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2027569

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Owing to the spatial overlap of the ion plasma sheet (ring current) with the Earth’s neutral-hydrogen geocorona, there is a significant rate of occurrence of charge-exchange collisions in the dipolar portion of the Earth’s magnetosphere. During a charge-exchange collision between an energetic proton and a low-energy hydrogen atom, a low-energy proton is produced. These “byproduct” cold protons are trapped in the Earth’s magnetic field where they advect via E×B drift. In this report, the number density and behavior of this cold-proton population are assessed. Estimates of the rate of production of byproduct cold protons from charge exchange are in the vicinity of 1.14 cm−3per day at geosynchronous orbit or about 5 tons per day for the entire dipolar magnetosphere. The production rate of cold protons owing to electron-impact ionization of the geocorona by the electron plasma sheet at geosynchronous orbit is about 12% of the charge-exchange production rate, but the production rate by solar photoionization of the neutral geocorona is comparable or larger than the charge-exchange production rate. The byproduct-ion production rates are smaller than observed early time refilling rates for the outer plasmasphere. Numerical simulations of the production and transport of cold charge-exchange byproduct protons find that they have very low densities on the nightside of geosynchronous orbit, and they can have densities of 0.2–0.3 cm−3at geosynchronous orbit on the dayside. These dayside byproduct-proton densities might play a role in shortening the early phase of plasmaspheric refilling. 
    more » « less
  2. null (Ed.)