skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2027920

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coastal systems are immensely valuable to humans. They contain unique ecosystems that are biodiversity reservoirs and provide key ecosystem services as well as a wealth of cultural heritage. Despite their importance to humans, many coastal systems are experiencing degradation that threatens their integrity and provisioning of services. While much is known about the plant communities and associated wildlife in coastal areas, the importance of microorganisms represents a large knowledge gap. Here we review the ecology of plant-microbial symbioses in coastal systems, including mycorrhizae, nitrogen fixers, endophytes, rhizosphere microbes, and pathogens. We focus on four common coastal communities: sand dunes, marshes, mangroves, and forests/shrublands. We also assess recent research and the potential for using microbes in coastal restoration efforts to mitigate anthropogenic impacts. We find that microbial symbionts are largely responsible for the health of plants constituting the foundation of coastal communities by affecting plant establishment, growth, competitive ability, and stress tolerance, as well as modulating biogeochemical cycling in these stressful coastal systems. Current use of microbial symbionts to augment restoration of stressful and degraded coastal systems is still very much in its infancy; however, it holds great promise for increasing restoration success on the coast. Much research is still needed to test and develop microbial inocula for facilitating restoration of different coastal systems. This is an excellent opportunity for collaboration between restoration practitioners and microbial ecologists to work toward a common goal of enhancing resilience of our coastal ecosystems at a time when these systems are vulnerable to an increasing number of threats. 
    more » « less