skip to main content


Search for: All records

Award ID contains: 2028221

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant has caused a dramatic resurgence in infections in the United Sates, raising questions regarding potential transmissibility among vaccinated individuals.

    Methods

    Between October 2020 and July 2021, we sequenced 4439 SARS-CoV-2 full genomes, 23% of all known infections in Alachua County, Florida, including 109 vaccine breakthrough cases. Univariate and multivariate regression analyses were conducted to evaluate associations between viral RNA burden and patient characteristics. Contact tracing and phylogenetic analysis were used to investigate direct transmissions involving vaccinated individuals.

    Results

    The majority of breakthrough sequences with lineage assignment were classified as Delta variants (74.6%) and occurred, on average, about 3 months (104 ± 57.5 days) after full vaccination, at the same time (June-July 2021) of Delta variant exponential spread within the county. Six Delta variant transmission pairs between fully vaccinated individuals were identified through contact tracing, 3 of which were confirmed by phylogenetic analysis. Delta breakthroughs exhibited broad viral RNA copy number values during acute infection (interquartile range, 1.2-8.64 Log copies/mL), on average 38% lower than matched unvaccinated patients (3.29-10.81 Log copies/mL, P < .00001). Nevertheless, 49% to 50% of all breakthroughs, and 56% to 60% of Delta-infected breakthroughs exhibited viral RNA levels above the transmissibility threshold (4 Log copies/mL) irrespective of time after vaccination.

    Conclusions

    Delta infection transmissibility and general viral RNA quantification patterns in vaccinated individuals suggest limited levels of sterilizing immunity that need to be considered by public health policies. In particular, ongoing evaluation of vaccine boosters should specifically address whether extra vaccine doses curb breakthrough contribution to epidemic spread.

     
    more » « less
  2. Background: In the wake of the COVID-19 pandemic, scientists have scrambled to collect and analyze SARS-CoV-2 genomic data to inform public health responses to COVID-19 in real-time. Open-source phylogenetic and data visualization platforms for monitoring SARS-CoV-2 genomic epidemiology have rapidly gained popularity for their ability to illuminate spatial-temporal transmission patterns worldwide. However, the utility of such tools to inform public health decision-making for COVID-19 in real-time remains to be explored. Objective: The objective of this study was to convene experts in public health, infectious diseases, virology, and bioinformatics – many of whom were actively engaged in the COVID-19 response at the time of their participation – to discuss the application of phylodynamic tools to inform pandemic responses. Methods: A series of four virtual focus group discussions were hosted between June 2020 and June 2021, covering the pre- and post-variant and vaccination eras of the COVID-19 crisis. Audio recordings were transcribed verbatim, and an iterative, thematic qualitative framework was used for analysis. Results: Of the 41 individuals invited, 23 total participants (56.1%) agreed to participate. Across the four focus group sessions, 15 (65%) of the participants were female, 17 (74%) were white, and 5 (22%) were black. Participants were described as molecular epidemiologists (ME, n=9), clinician-researchers (n=3), infectious disease experts (ID, n=4), and public health professionals (PH) at the local (n=4), state (n=2), and federal (n=1) levels. Collectively, participants felt that successful uptake of phylodynamic tools relies on the strength of academic-public health partnerships. They called for interoperability standards in sequence data sharing and cited many resource issues that must be addressed, including timeliness and cost, in addition to improving issues related to sampling bias and the translation of phylodynamic findings into public health action. Conclusions: This was the first qualitative study to characterize the perspectives of key experts regarding the utility of phylodynamic tools for the public health response to COVID-19. The focus group participants identified key areas for improvement of existing and future phylogenetic and data visualization platforms for monitoring SARS-CoV-2 genomic epidemiology. This information is critical to both policymakers and developers as they consider how to handle existing and emerging SARS-CoV-2 variants during the ongoing crisis. 
    more » « less
  3. The SARS-CoV-2 pandemic has been presenting in periodic waves and multiple variants, of which some dominated over time with increased transmissibility. SARS-CoV-2 is still adapting in the human population, thus it is crucial to understand its evolutionary patterns and dynamics ahead of time. In this work, we analyzed transmission clusters and topology of SARSCoV-2 phylogenies at the global, regional (North America) and clade-specific (Delta and Omicron) epidemic scales. We used the Nextstrain’s nCov open global all-time phylogeny (September 2022, 2,698 strains, 2,243 for North America, 499 for Delta21A, and 543 for Omicron20M), with Nextstrain’s clade annotation and Pango lineages. Transmission clusters were identified using Phylopart, DYNAMITE, and several tree imbalance measures were calculated, including staircase-ness, Sackin and Colless index. We found that the phylogenetic clustering profiles of the global epidemic have highest diversification at a distance threshold of 3% (divergence of 10, where the tree sampled median is 49). Phylopart and DYNAMITE clusters moderately-to-highly agree with the Pango nomenclature and the Nextstrain’s clade. At the regional and clade-specific scale, transmission clustering profiles tend to flatten and similar clusters are found at distance thresholds between 0.05% and 25%. All the considered phylogenies exhibit high tree imbalance with respect to what expected in random phylogenies, suggesting short infection times and antigenic drift, perhaps due to progressive transition from innate to adaptive immunity in the population. 
    more » « less
  4. Luigi Martelli, Pier (Ed.)
    Abstract Summary TARDiS is a novel phylogenetic tool for optimal genetic subsampling. It optimizes both genetic diversity and temporal distribution through a genetic algorithm. Availability and implementation TARDiS, along with example datasets and a user manual, is available at https://github.com/smarini/tardis-phylogenetics 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been growing exponentially, affecting over 4 million people and causing enormous distress to economies and societies worldwide. A plethora of analyses based on viral sequences has already been published both in scientific journals and through non–peer-reviewed channels to investigate the genetic heterogeneity and spatiotemporal dissemination of SARS-CoV-2. However, a systematic investigation of phylogenetic information and sampling bias in the available data is lacking. Although the number of available genome sequences of SARS-CoV-2 is growing daily and the sequences show increasing phylogenetic information, country-specific data still present severe limitations and should be interpreted with caution. Objective The objective of this study was to determine the quality of the currently available SARS-CoV-2 full genome data in terms of sampling bias as well as phylogenetic and temporal signals to inform and guide the scientific community. Methods We used maximum likelihood–based methods to assess the presence of sufficient information for robust phylogenetic and phylogeographic studies in several SARS-CoV-2 sequence alignments assembled from GISAID (Global Initiative on Sharing All Influenza Data) data released between March and April 2020. Results Although the number of high-quality full genomes is growing daily, and sequence data released in April 2020 contain sufficient phylogenetic information to allow reliable inference of phylogenetic relationships, country-specific SARS-CoV-2 data sets still present severe limitations. Conclusions At the present time, studies assessing within-country spread or transmission clusters should be considered preliminary or hypothesis-generating at best. Hence, current reports should be interpreted with caution, and concerted efforts should continue to increase the number and quality of sequences required for robust tracing of the epidemic. 
    more » « less