skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2028351

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The electrochemical conversion of waste CO2into useful fuels and chemical products is a promising approach to reduce CO2emissions; however, several challenges still remain to be addressed. Thus far, most CO2reduction studies use pure CO2as the gas reactant, but CO2emissions typically contain a number of gas impurities, such as nitrogen oxides, oxygen gas, and sulfur oxides. Gas impurities in CO2can pose a significant obstacle for efficient CO2electrolysis because they can influence the reaction and catalyst. This Minireview highlights early examples of CO2reduction studies using mixed‐gas feeds, explores strategies to sustain CO2reduction in the presence of gas impurities, and discusses their implications for future progress in this emerging field. 
    more » « less
  2. null (Ed.)