skip to main content


Search for: All records

Award ID contains: 2028598

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background

    Increased rates of exclusive breastfeeding could significantly improve infant survival in low- and middle-income countries. There is a concern that increased hot weather due to climate change may increase rates of supplemental feeding due to infants requiring fluids, or the perception that infants are dehydrated.

    Objective

    To understand how hot weather conditions may impact infant feeding practices by identifying and appraising evidence that exclusively breastfed infants can maintain hydration levels under hot weather conditions, and by examining available literature on infant feeding practices in hot weather.

    Methods

    Systematic review of published studies that met inclusion criteria in MEDLINE, EMBASE, Global Health and Web of Science databases. The quality of included studies was appraised against predetermined criteria and relevant data extracted to produce a narrative synthesis of results.

    Results

    Eighteen studies were identified. There is no evidence among studies of infant hydration that infants under the age of 6months require supplementary food or fluids in hot weather conditions. In some settings, healthcare providers and relatives continue to advise water supplementation in hot weather or during the warm seasons. Cultural practices, socio-economic status, and other locally specific factors also affect infant feeding practices and may be affected by weather and seasonal changes themselves.

    Conclusion

    Interventions to discourage water/other fluid supplementation in breastfeeding infants below 6 months are needed, especially in low-middle income countries. Families and healthcare providers should be advised that exclusive breastfeeding (EBF) is recommended even in hot conditions.

     
    more » « less
  2. Abstract

    Exposure to extreme heat in pregnancy increases the risk of stillbirth. Progress in reducing stillbirth rates has stalled, and populations are increasingly exposed to high temperatures and climate events that may further undermine health strategies. This narrative review summarises the current clinical and epidemiological evidence of the impact of maternal heat exposure on stillbirth risk. Out of 20 studies, 19 found an association between heat and stillbirth risk. Recent studies based in low‐ to middle‐income countries and tropical settings add to the existing literature to demonstrate that all populations are at risk. Additionally, both short‐term heat exposure and whole‐pregnancy heat exposure increase the risk of stillbirth. A definitive threshold of effect has not been identified, as most studies define exposure as above the 90th centile of the usual temperature for that population. Therefore, the association between heat and stillbirth has been found with exposures from as low as >12.64°C up to >46.4°C. The pathophysiological pathways by which maternal heat exposure may lead to stillbirth, based on human and animal studies, include both placental and embryonic or fetal impacts. Although evidence gaps remain and further research is needed to characterise these mechanistic pathways in more detail, preliminary evidence suggests epigenetic changes, alteration in imprinted genes, congenital abnormalities, reduction in placental blood flow, size and function all play a part. Finally, we explore this topic from a public health perspective; we discuss and evaluate the current public health guidance on minimising the risk of extreme heat in the community. There is limited pregnancy‐specific guidance within heatwave planning, and no evidence‐based interventions have been established to prevent poor pregnancy outcomes. We highlight priority research questions to move forward in the field and specifically note the urgent need for evidence‐based interventions that are sustainable.

     
    more » « less
    Free, publicly-accessible full text available July 28, 2024
  3. Heat exposure in pregnancy is associated with a range of adverse health and wellbeing outcomes, yet research on the lived experience of pregnancy in high temperatures is lacking. We conducted qualitative research in 2021 in two communities in rural Kilifi County, Kenya, a tropical savannah area currently experiencing severe drought. Pregnant and postpartum women, their male spouses and mothers-in-law, community health volunteers, and local health and environment stakeholders were interviewed or participated in focus group discussions. Pregnant women described symptoms that are classically regarded as heat exhaustion, including dizziness, fatigue, dehydration, insomnia, and irritability. They interpreted heat-related tachycardia as signalling hypertension and reported observing more miscarriages and preterm births in the heat. Pregnancy is conceptualised locally as a ‘normal’ state of being, and women continue to perform physically demanding household chores in the heat, even when pregnant. Women reported little support from family members to reduce their workload at this time, reflecting their relative lack of autonomy within the household, but also potentially the ‘normalisation’ of heat in these communities. Climate change risk reduction strategies for pregnant women in low-resource settings need to be cognisant of local household gender dynamics that constrain women's capacity to avoid heat exposures. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  4. Climate change is likely to have wide-ranging impacts on maternal and neonatal health in Africa. Populations in low-resource settings already experience adverse impacts from weather extremes, a high burden of disease from environmental exposures, and limited access to high-quality clinical care. Climate change is already increasing local temperatures. Neonates are at high risk of heat stress and dehydration due to their unique metabolism, physiology, growth, and developmental characteristics. Infants in low-income settings may have little protection against extreme heat due to housing design and limited access to affordable space cooling. Climate change may increase risks to neonatal health from weather disasters, decreasing food security, and facilitating infectious disease transmission. Effective interventions to reduce risks from the heat include health education on heat risks for mothers, caregivers, and clinicians; nature-based solutions to reduce urban heat islands; space cooling in health facilities; and equitable improvements in housing quality and food systems. Reductions in greenhouse gas emissions are essential to reduce the long-term impacts of climate change that will further undermine global health strategies to reduce neonatal mortality. 
    more » « less
  5. Abstract Many populations experience high seasonal temperatures. Pregnant women are considered vulnerable to extreme heat because ambient heat exposure has been linked to pregnancy complications including preterm birth and low birthweight. The physiological mechanisms that underpin these associations are poorly understood. We reviewed the existing research evidence to clarify the mechanisms that lead to adverse pregnancy outcomes in order to inform public health actions. A multi-disciplinary expert group met to review the existing evidence base and formulate a consensus regarding the physiological mechanisms that mediate the effect of high ambient temperature on pregnancy. A literature search was conducted in advance of the meeting to identify existing hypotheses and develop a series of questions and themes for discussion. Numerous hypotheses have been generated based on animal models and limited observational studies. There is growing evidence that pregnant women are able to appropriately thermoregulate; however, when exposed to extreme heat, there are a number of processes that may occur which could harm the mother or fetus including a reduction in placental blood flow, dehydration, and an inflammatory response that may trigger preterm birth. There is a lack of substantial evidence regarding the processes that cause heat exposure to harm pregnant women. Research is urgently needed to identify what causes the adverse outcomes in pregnancy related to high ambient temperatures so that the impact of climate change on pregnant women can be mitigated. 
    more » « less
  6. Children, and particularly infants, have physiological, anatomic, and social factors that increase vulnerability to temperature extremes. We performed a systematic review to explore the association between acute adverse infant outcomes (children 0–1 years) and exposure to high and low ambient temperatures. MEDLINE (Pubmed), Embase, CINAHL Plus, and Global Health were searched alongside the reference lists of key papers. We included published journal papers in English that assessed adverse infant outcomes related to short-term weather-related temperature exposure. Twenty-six studies met our inclusion criteria. Outcomes assessed included: infant mortality (n = 9), sudden infant death syndrome (n = 5), hospital visits or admissions (n = 5), infectious disease outcomes (n = 5), and neonatal conditions such as jaundice (n = 2). Higher temperatures were associated with increased risk of acute infant mortality, hospital admissions, and hand, foot, and mouth disease. Several studies identified low temperature impacts on infant mortality and episodes of respiratory disease. Findings on temperature risks for sudden infant death syndrome were inconsistent. Only five studies were conducted in low- or middle-income countries, and evidence on subpopulations and temperature-sensitive infectious diseases was limited. Public health measures are required to reduce the impacts of heat and cold on infant health. 
    more » « less
  7. Abstract Children (<5 years) are highly vulnerable during hot weather due to their reduced ability to thermoregulate. There has been limited quantification of the burden of climate change on health in sub-Saharan Africa, in part due to a lack of evidence on the impacts of weather extremes on mortality and morbidity. Using a linear threshold model of the relationship between daily temperature and child mortality, we estimated the impact of climate change on annual heat-related child deaths for the current (1995–2020) and future time periods (2020–2050). By 2009, heat-related child mortality was double what it would have been without climate change; this outweighed reductions in heat mortality from improvements associated with development. We estimated future burdens of child mortality for three emission scenarios (SSP119, SSP245 and SSP585), and a single scenario of population growth. Under the high emission scenario (SSP585), including changes to population and mortality rates, heat-related child mortality is projected to double by 2049 compared to 2005–2014. If 2050 temperature increases were kept within the Paris target of 1.5 °C (SSP119 scenario), approximately 4000–6000 child deaths per year could be avoided in Africa. The estimates of future heat-related mortality include the assumption of the significant population growth projected for Africa, and declines in child mortality consistent with Global Burden of Disease estimates of health improvement. Our findings support the need for urgent mitigation and adaptation measures that are focussed on the health of children. 
    more » « less