skip to main content


Search for: All records

Award ID contains: 2028902

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Sequencing of melanomas has identified hundreds of recurrent mutations in both coding and non-coding DNA. These include a number of well-characterized oncogenic driver mutations, such as coding mutations in the BRAF and NRAS oncogenes, and non-coding mutations in the promoter of telomerase reverse transcriptase ( TERT ). However, the molecular etiology and significance of most of these mutations is unknown. Here, we use a new method known as CPD-capture-seq to map UV-induced cyclobutane pyrimidine dimers (CPDs) with high sequencing depth and single nucleotide resolution at sites of recurrent mutations in melanoma. Our data reveal that many previously identified drivers and other recurrent mutations in melanoma occur at CPD hotspots in UV-irradiated melanocytes, often associated with an overlapping binding site of an E26 transformation-specific (ETS) transcription factor. In contrast, recurrent mutations in the promoters of a number of known or suspected cancer genes are not associated with elevated CPD levels. Our data indicate that a subset of recurrent protein-coding mutations are also likely caused by ETS-induced CPD hotspots. This analysis indicates that ETS proteins profoundly shape the mutation landscape of melanoma and reveals a method for distinguishing potential driver mutations from passenger mutations whose recurrence is due to elevated UV damage. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Fixed-charge (non-polarizable) forcefields are accurate and computationally efficient tools for modeling the molecular dynamics of nucleic acid polymers, particularly DNA, well into the µs timescale. The continued utility of these forcefields depends in part on expanding the residue set in step with advancing nucleic acid chemistry and biology. A key step in parameterizing new residues is charge derivation which is self-consistent with the existing residues. As atomic charges are derived by fitting against molecular electrostatic potentials, appropriate structural models are critical. Benchmarking against the existing charge set used in current AMBER nucleic acid forcefields, we report that quantum mechanical models of deoxynucleosides, even at a high level of theory, are not optimal structures for charge derivation. Instead, structures from molecular mechanics minimization yield charges with up to 6-fold lower RMS deviation from the published values, due to the choice of such an approach in the derivation of the original charge set. We present a contemporary protocol for rendering self-consistent charges as well as optimized charges for a panel of nine non-canonical residues that will permit comparison with literature as well as studying the dynamics of novel DNA polymers. 
    more » « less
  4. DNA base damage arises frequently in living cells and needs to be removed by base excision repair (BER) to prevent mutagenesis and genome instability. Both the formation and repair of base damage occur in chromatin and are conceivably affected by DNA-binding proteins such as transcription factors (TFs). However, to what extent TF binding affects base damage distribution and BER in cells is unclear. Here, we used a genome-wide damage mapping method, N -methylpurine-sequencing (NMP-seq), and characterized alkylation damage distribution and BER at TF binding sites in yeast cells treated with the alkylating agent methyl methanesulfonate (MMS). Our data show that alkylation damage formation was mainly suppressed at the binding sites of yeast TFs ARS binding factor 1 (Abf1) and rDNA enhancer binding protein 1 (Reb1), but individual hotspots with elevated damage levels were also found. Additionally, Abf1 and Reb1 binding strongly inhibits BER in vivo and in vitro, causing slow repair both within the core motif and its adjacent DNA. Repair of ultraviolet (UV) damage by nucleotide excision repair (NER) was also inhibited by TF binding. Interestingly, TF binding inhibits a larger DNA region for NER relative to BER. The observed effects are caused by the TF–DNA interaction, because damage formation and BER can be restored by depletion of Abf1 or Reb1 protein from the nucleus. Thus, our data reveal that TF binding significantly modulates alkylation base damage formation and inhibits repair by the BER pathway. The interplay between base damage formation and BER may play an important role in affecting mutation frequency in gene regulatory regions. 
    more » « less