skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2031546

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability to quickly learn fundamentals about a new infectious disease, such as how it is transmitted, the incubation period, and related symptoms, is crucial in any novel pandemic. For instance, rapid identification of symptoms can enable interventions for dampening the spread of the disease. Traditionally, symptoms are learned from research publications associated with clinical studies. However, clinical studies are often slow and time intensive, and hence delays can have dire consequences in a rapidly spreading pandemic like we have seen with COVID-19. In this article, we introduce SymptomID, a modular artificial intelligence–based framework for rapid identification of symptoms associated with novel pandemics using publicly available news reports. SymptomID is built using the state-of-the-art natural language processing model (Bidirectional Encoder Representations for Transformers) to extract symptoms from publicly available news reports and cluster-related symptoms together to remove redundancy. Our proposed framework requires minimal training data, because it builds on a pre-trained language model. In this study, we present a case study of SymptomID using news articles about the current COVID-19 pandemic. Our COVID-19 symptom extraction module, trained on 225 articles, achieves an F1 score of over 0.8. SymptomID can correctly identify well-established symptoms (e.g., “fever” and “cough”) and less-prevalent symptoms (e.g., “rashes,” “hair loss,” “brain fog”) associated with the novel coronavirus. We believe this framework can be extended and easily adapted in future pandemics to quickly learn relevant insights that are fundamental for understanding and combating a new infectious disease. 
    more » « less
  2. null (Ed.)
    Background There are still many unanswered questions about the novel coronavirus; however, a largely underutilized source of knowledge is the millions of people who have recovered after contracting the virus. This includes a majority of undocumented cases of COVID-19, which were classified as mild or moderate and received little to no clinical care during the course of illness. Objective This study aims to document and glean insights from the experiences of individuals with a first-hand experience in dealing with COVID-19, especially the so-called mild-to-moderate cases that self-resolved while in isolation. Methods This web-based survey study called C19 Insider Scoop recruited adult participants aged 18 years or older who reside in the United States and had tested positive for COVID-19 or antibodies. Participants were recruited through various methods, including online support groups for COVID-19 survivors, advertisement in local news outlets, as well as through professional and other networks. The main outcomes measured in this study included knowledge of contraction or transmission of the virus, symptoms, and personal experiences on the road to recovery. Results A total of 72 participants (female, n=53; male, n=19; age range: 18-73 years; mean age: 41 [SD 14] years) from 22 US states were enrolled in this study. The top known source of how people contracted SARS-CoV-2, the virus known to cause COVID-19, was through a family or household member (26/72, 35%). This was followed by essential workers contracting the virus through the workplace (13/72, 18%). Participants reported up to 27 less-documented symptoms that they experienced during their illness, such as brain or memory fog, palpitations, ear pain or discomfort, and neurological problems. In addition, 47 of 72 (65%) participants reported that their symptoms lasted longer than the commonly cited 2-week period even for mild cases of COVID-19. The mean recovery time of the study participants was 4.5 weeks, and exactly one-half of participants (50%) still experienced lingering symptoms of COVID-19 after an average of 65 days following illness onset. Additionally, 37 (51%) participants reported that they experienced stigma associated with contracting COVID-19. Conclusions This study presents preliminary findings suggesting that emphasis on family or household spread of COVID-19 may be lacking and that there is a general underestimation of the recovery time even for mild cases of illness with the virus. Although a larger study is needed to validate these results, it is important to note that as more people experience COVID-19, insights from COVID-19 survivors can enable a more informed public, pave the way for others who may be affected by the virus, and guide further research. 
    more » « less
  3. The COVID-19 pandemic has infected millions of people around the world, spreading rapidly and causing a flood of patients that risk overwhelming clinical facilities. Whether in urban or rural areas, hospitals have limited resources and personnel to treat critical infections in intensive care units, which must be allocated effectively. To assist clinical staff in deciding which patients are in the greatest need of critical care, we develop a predictive model based on a publicly-available data set that is rich in clinical markers. We perform statistical analysis to determine which clinical markers strongly correlate with hospital admission, semi-intensive care, and intensive care for COVID-19 patients. We create a predictive model that will assist clinical personnel in determining COVID-19 patient prognosis. Additionally, we take a step towards a global framework for COVID-19 prognosis prediction by incorporating statistical data for geographically and ethnically diverse COVID--19 patient sets into our own model. To the best of our knowledge, this is the first model which does not exclusively utilize local data. 
    more » « less