skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2031584

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Chaperones are essential to the co-translational folding of most proteins. However, the principles of co-translational chaperone interaction throughout the proteome are poorly understood, as current methods are restricted to few substrates and cannot capture nascent protein folding or chaperone binding sites, precluding a comprehensive understanding of productive and erroneous protein biosynthesis. Here, by integrating genome-wide selective ribosome profiling, single-molecule tools, and computational predictions using AlphaFold we show that the binding of the mainE. colichaperones involved in co-translational folding, Trigger Factor (TF) and DnaK correlates with “unsatisfied residues” exposed on nascent partial folds – residues that have begun to form tertiary structure but cannot yet form all native contacts due to ongoing translation. This general principle allows us to predict their co-translational binding across the proteome based on sequence only, which we verify experimentally. The results show that TF and DnaK stably bind partially folded rather than unfolded conformers. They also indicate a synergistic action of TF guiding intra-domain folding and DnaK preventing premature inter-domain contacts, and reveal robustness in the larger chaperone network (TF, DnaK, GroEL). Given the complexity of translation, folding, and chaperone functions, our predictions based on general chaperone binding rules indicate an unexpected underlying simplicity. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Stretched-exponential protein refolding kinetics, first observed decades ago, were attributed to a nonnative ensemble of structures with parallel, non-interconverting folding pathways. However, the structural origin of the large energy barriers preventing interconversion between these folding pathways is unknown. Here, we combine simulations with limited proteolysis (LiP) and cross-linking (XL) mass spectrometry (MS) to study the protein phosphoglycerate kinase (PGK). Simulations recapitulate its stretched-exponential folding kinetics and reveal that misfolded states involving changes of entanglement underlie this behavior: either formation of a nonnative, noncovalent lasso entanglement or failure to form a native entanglement. These misfolded states act as kinetic traps, requiring extensive unfolding to escape, which results in a distribution of free energy barriers and pathway partitioning. Using LiP-MS and XL-MS, we propose heterogeneous structural ensembles consistent with these data that represent the potential long-lived misfolded states PGK populates. This structural and energetic heterogeneity creates a hierarchy of refolding timescales, explaining stretched-exponential kinetics. 
    more » « less
    Free, publicly-accessible full text available March 14, 2026
  3. One-third of protein domains in the CATH database contain a recently discovered tertiary topological motif: non-covalent lasso entanglements, in which a segment of the protein backbone forms a loop closed by non-covalent interactions between residues and is threaded one or more times by the N- or C-terminal backbone segment. Unknown is how frequently this structural motif appears across the proteomes of organisms. And the correlation of these motifs with various classes of protein function and biological processes have not been quantified. Here, using a combination of protein crystal structures, AlphaFold2 predictions, and Gene Ontology terms we show that in E. coli, S. cerevisiae and H. sapiens that 71%, 52% and 49% of globular proteins contain one-or-more non-covalent lasso entanglements in their native fold, and that some of these are highly complex with multiple threading events. Further, proteins containing these tertiary motifs are consistently enriched in certain functions and biological processes across these organisms and depleted in others, strongly indicating an influence of evolutionary selection pressures acting positively and negatively on the distribution of these motifs. Together, these results demonstrate that non-covalent lasso entanglements are widespread and indicate they may be extensively utilized for protein function and subcellular processes, thus impacting phenotype. 
    more » « less