skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2031692

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ability to reconfigure spin structure and spin‐photon interactions by an external electric field is a prerequisite for seamless integration of opto‐spintronics into modern electronics. In this study, the use of electric field on the tuning of circular photo galvanic effect in a quasi‐2D oxyhalide perovskite Bi4NbO8Cl is reported. The electrical transport measurements are applied to study the switching characteristics of the microsheet devices. The electric field is used to tune the nanoscale devices and an optical orientation approach is applied to understand the field‐tuned spin‐polarized band structures. It is found that the circular photogalvanic current can be erased and re‐created by poling, indicating the electric‐field‐based control over spin structure. The study enriches the basic understanding of the symmetry‐regulated optoelectronic response in ferroelectrics with spin‐orbit coupling. 
    more » « less
  2. Inversion symmetry breaking could lead to the creation of a Rashba–Dresselhauls magnetic field, which plays the key role in spintronic devices. In this work, we propose and develop a composition gradient engineering approach that breaks inversion symmetry into inorganic halide perovskites with strong spin–orbit coupling. We synthesize epitaxial CsPbBr x Cl (3− x ) with Br/Cl composition gradient by a two-step chemical vapor deposition approach. Through optoelectronic measurements, we show the presence of circular photogalvanic effects (CPGEs), evidencing a Rashba-like spin polarized band structure. By spatially resolved photoluminescence spectra, we find that the observed CPGE is likely a cumulative result of inversion symmetry-broken interfaces featured by abrupt and stepwise composition gradient between the pristine and separated daughter phases. Our work suggests an avenue in engineering the spintronic property of halide perovskites for information processing. 
    more » « less
  3. null (Ed.)