skip to main content


Search for: All records

Award ID contains: 2031785

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The continuing cases of COVID-19 due to emerging strains of the SARS-CoV-2 virus underscore the urgent need to develop effective antiviral technologies. A crucial aspect of reducing transmission of the virus is through environmental disinfection. To this end, a nanotechnology-based antimicrobial platform utilizing engineered water nanostructures (EWNS) was utilized to challenge the human coronavirus 229E (HCoV-229E), a surrogate of SARS-CoV-2, on surfaces. The EWNS were synthesized using electrospray and ionization of aqueous solutions of antimicrobials, had a size in the nanoscale, and contained both antimicrobial agents and reactive oxygen species (ROS). Various EWNS were synthesized using single active ingredients (AI) as well as their combinations. The results of EWNS treatment indicate that EWNS produced with a cocktail of hydrogen peroxide, citric acid, lysozyme, nisin, and triethylene glycol was able to inactivate 3.8 logs of HCoV-229E, in 30 s of treatment. The delivered dose of antimicrobials to the surface was measured to be in pico to nanograms. These results indicate the efficacy of EWNS technology as a nano-carrier for delivering a minuscule dose while inactivating HCoV-229E, making this an attractive technology against SARS-CoV-2. 
    more » « less