Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Single-cell technologies characterize complex cell populations across multiple data modalities at unprecedented scale and resolution. Multi-omic data for single cell gene expression, in situ hybridization, or single cell chromatin states are increasingly available across diverse tissue types. When isolating specific cell types from a sample of disassociated cells or performing in situ sequencing in collections of heterogeneous cells, one challenging task is to select a small set of informative markers that robustly enable the identification and discrimination of specific cell types or cell states as precisely as possible. Given single cell RNA-seq data and a set of cellular labels to discriminate, scGeneFit selects gene markers that jointly optimize cell label recovery using label-aware compressive classification methods. This results in a substantially more robust and less redundant set of markers than existing methods, most of which identify markers that separate each cell label from the rest. When applied to a data set given a hierarchy of cell types as labels, the markers found by our method improves the recovery of the cell type hierarchy with fewer markers than existing methods using a computationally efficient and principled optimization.more » « less
-
Free, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available November 1, 2026
-
Multiple case-controlled studies have shown that analyzing fragmentation patterns in plasma cell-free DNA (cfDNA) can distinguish individuals with cancer from healthy controls. However, there have been few studies that investigate various types of cfDNA fragmentomics patterns in individuals with other diseases. We therefore developed a comprehensive statistic, called fragmentation signatures, that integrates the distributions of fragment positioning, fragment length, and fragment end-motifs in cfDNA. We found that individuals with venous thromboembolism, systemic lupus erythematosus, dermatomyositis, or scleroderma have cfDNA fragmentation signatures that closely resemble those found in individuals with advanced cancers. Furthermore, these signatures were highly correlated with increases in inflammatory markers in the blood. We demonstrate that these similarities in fragmentation signatures lead to high rates of false positives in individuals with autoimmune or vascular disease when evaluated using conventional binary classification approaches for multicancer earlier detection (MCED). To address this issue, we introduced a multiclass approach for MCED that integrates fragmentation signatures with protein biomarkers and achieves improved specificity in individuals with autoimmune or vascular disease while maintaining high sensitivity. Though these data put substantial limitations on the specificity of fragmentomics-based tests for cancer diagnostics, they also offer ways to improve the interpretability of such tests. Moreover, we expect these results will lead to a better understanding of the process—most likely inflammatory—from which abnormal fragmentation signatures are derived.more » « lessFree, publicly-accessible full text available August 26, 2026
-
AI is now a cornerstone of modern dataset analysis. In many real world applications, practitioners are concerned with controlling specific kinds of errors, rather than minimizing the overall number of errors. For example, biomedical screening assays may primarily be concerned with mitigating the number of false positives rather than false negatives. Quantifying uncertainty in AI-based predictions, and in particular those controlling specific kinds of errors, remains theoretically and practically challenging. We develop a strategy called multidimensional informed generalized hypothesis testing (MIGHT) which we prove accurately quantifies uncertainty and confidence given sufficient data, and concomitantly controls for particular error types. Our key insight was that it is possible to integrate canonical cross-validation and parametric calibration procedures within a nonparametric ensemble method. Simulations demonstrate that while typical AI based-approaches cannot be trusted to obtain the truth, MIGHT can be. We apply MIGHT to answer an open question in liquid biopsies using circulating cell-free DNA (ccfDNA) in individuals with or without cancer: Which biomarkers, or combinations thereof, can we trust? Performance estimates produced by MIGHT on ccfDNA data have coefficients of variation that are often orders of magnitude lower than other state of the art algorithms such as support vector machines, random forests, and Transformers, while often also achieving higher sensitivity. We find that combinations of variable sets often decrease rather than increase sensitivity over the optimal single variable set because some variable sets add more noise than signal. This work demonstrates the importance of quantifying uncertainty and confidence—with theoretical guarantees—for the interpretation of real-world data.more » « lessFree, publicly-accessible full text available August 26, 2026
-
Free, publicly-accessible full text available August 20, 2026
-
Free, publicly-accessible full text available August 20, 2026
-
Free, publicly-accessible full text available August 7, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available July 30, 2026
An official website of the United States government
