skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2032146

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. S. Mažeika P. Sulliván, Director of the Baruch Institute of Coastal Ecology and Forest Science (BICEFS) and Professor in the Department of Forestry and Environmental Conservation at Clemson University, passed away on May 31, 2024, in McClellanville, South Carolina, at the age of 51. 
    more » « less
  2. 1. Global change may cause widespread phenological shifts. But knowledge of the extent and generality of these shifts is limited by the availability of phenological records with sufficiently large spatiotemporal extents. Using North American odonates (damselflies and dragonflies) as a model system, we show how a combination of natural history museum and community science collections, beginning in 1901 and extending through 2020, can be leveraged to better understand phenology. 2. We begin with an analysis of odonate functional traits. Principal coordinate analysis is used to place odonate genera within a three-dimensional trait ordination. From this, we identify seven distinct functional groups and select a single odonate genus to represent each group. Next, we pair the odonate records with a list of environmental covariates, including air temperature and degree days, photoperiod, precipitation, latitude and elevation. An iterative subsampling process is then used to mitigate spatiotemporal sampling bias within the odonate dataset. Finally, we use path analysis to quantify the direct effects of degree days, photoperiod and precipitation on odonate emergence timing, while accounting for indirect effects of latitude, elevation and year. 3. Path models showed that degree days, photoperiod and precipitation each have a significant influence on odonate emergence timing, but degree days have the largest overall effect. Notably, the effect that each covariate has on emergence timing varied among functional groups, with positive relationships observed for some group representatives and negative relationships observed for others. For instance, Calopteryx sp. emerged earlier as degree days increased, while Sympetrum sp. emerged later. 4. Previous studies have linked odonate emergence timing to temperature, photoperiod or precipitation. By using natural history museum and community science data to simultaneously examine all three influences, we show that systems-level understanding of odonate phenology may now be possible. 
    more » « less