skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2032328

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Chlorinated very short‐lived substances (Cl‐VSLS) are ubiquitous in the troposphere and can contribute to the stratospheric chlorine budget. In this study, we present measurements of atmospheric dichloromethane (CH2Cl2), tetrachloroethene (C2Cl4), chloroform (CHCl3), and 1,2‐dichloroethane (1,2‐DCA) obtained during the National Aeronautics and Space Administration (NASA) Atmospheric Tomography (ATom) global‐scale aircraft mission (2016–2018), and use the Community Earth System Model (CESM) updated with recent chlorine chemistry to further investigate their global tropospheric distribution. The measured global average Cl‐VSLS mixing ratios, from 0.2 to 13 km altitude, were 46.6 ppt (CH2Cl2), 9.6 ppt (CHCl3), 7.8 ppt (1,2‐DCA), and 0.84 ppt (C2Cl4) measured by the NSF NCAR Trace Organic Analyzer (TOGA) during ATom. Both measurements and model show distinct hemispheric gradients with the mean measured Northern to Southern Hemisphere (NH/SH) ratio of 2 or greater for all four Cl‐VSLS. In addition, the TOGA profiles over the NH mid‐latitudes showed general enhancements in the Pacific basin compared to the Atlantic basin, with up to ∼18 ppt difference for CH2Cl2in the mid troposphere. We tagged regional source emissions of CH2Cl2and C2Cl4in the model and found that Asian emissions dominate the global distributions of these species both at the surface (950 hPa) and at high altitudes (150 hPa). Overall, our results confirm relatively high mixing ratios of Cl‐VSLS in the UTLS region and show that the CESM model does a reasonable job of simulating their global abundance but we also note the uncertainties with Cl‐VSLS emissions and active chlorine sources in the model. These findings will be used to validate future emission inventories and to investigate the fast convective transport of Cl‐VSLS to the UTLS region and their impact on stratospheric ozone. 
    more » « less