Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Interfacial thermal resistance plays a crucial role in efficient heat dissipation in modern electronic devices. It is critical to understand the interfacial thermal transport from both experiments and underlying physics. This review is focused on the transient opto-thermal Raman-based techniques for measuring the interfacial thermal resistance between 2D materials and substrate. This transient idea eliminates the use of laser absorption and absolute temperature rise data, therefore provides some of the highest level measurement accuracy and physics understanding. Physical concepts and perspectives are given for the time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), energy transport state-resolved Raman (ET-Raman), frequency domain ET-Raman (FET-Raman), as well as laser flash Raman and dual-wavelength laser flash Raman techniques. The thermal nonequilibrium between optical and acoustic phonons, as well as hot carrier diffusion must be considered for extremely small domain characterization of interfacial thermal resistance. To have a better understanding of phonon transport across material interfaces, we introduce a new concept termed effective interface energy transmission velocity. It is very striking that many reported interfaces have an almost constant energy transmission velocity over a wide temperature range. This physics consideration is inspired by the thermal reffusivity theory, which is effective for analyzing structure-phonon scattering. We expect the effective interface energy transmission velocity to give an intrinsic picture of the transmission of energy carriers, unaltered by the influence of their capacity to carry heat.more » « less
-
Abstract Partial laser treatment is introduced to carbon‐based microfibers to generate excellent photon sensing capability without bias. This treatment brings about a Seebeck coefficient distribution along the sample's length, out of which a photovoltage with no external bias is generated and sensed. Using a line‐shaped laser spot, carbon microfiber (CMF), graphene microfiber (GMF), and graphene aerogel fiber (GAF) are investigated for their response to µm‐scale photon irradiation. A higher sensitivity for the incident photon is found for the GAF with no position sensitivity. More Seebeck coefficient variation is also observed for the GAF considering the amount of laser power used for the laser treatment. A weaker Seebeck coefficient spatial variation is observed for the GMF compared with the GAF. However, its photovoltage shows an abrupt magnitude change from the laser‐treated region to the non‐treated one. Despite the low spatial variation of the Seebeck coefficient for the CMF, it features an excellent and accurate position‐sensitive photoresponse with polarization change over a distance of ≈100 µm. Such unique capability prompts novel applications in using partially annealed CMF for sensing the position of optical beams at the microscale.more » « less
-
Abstract This work reports the dynamic behaviors of graphene aerogel (GA) microfibers during and after continuous wave (CW) laser photoreduction. The reduction results in one‐order of magnitude increase in the electrical conductivity. The experimental results reveal the exact mechanisms of photoreduction as it occurs: immediate photochemical removal of oxygen functional groups causing a sharp decrease in electrical resistance and subsequent laser heating that facilitates thermal rearrangement of GO sheets towards more graphene‐like domains. X‐ray and Raman spectroscopy analysis confirm that photoreduction removes virtually all oxygen and nitrogen containing functional groups. Interestingly, a dynamic period immediately following the end of laser exposure shows a slow, gradual increase in electrical resistance, suggesting that a proportion of the electrical conductivity enhancement from photoreduction is not permanent. A two‐part experiment monitoring the resistance changes in real‐time before and after photoreduction is conducted to investigate this critical period. The thermal diffusivity evolution of the microfiber is tracked and shows an improvement of 277 % after all photoreduction experiments. A strong linear coherency between thermal diffusivity and electrical conductivity is also uncovered. This is the first known work to explore both the dynamic electrical and thermal evolution of a GO‐based aerogel during and after photoreduction.more » « less
-
Abstract Raman spectroscopy has been widely used to measure thermophysical properties of 2D materials. The local intense photon heating induces strong thermal nonequilibrium between optical and acoustic phonons. Both first principle calculations and recent indirect Raman measurements prove this phenomenon. To date, no direct measurement of the thermal nonequilibrium between optical and acoustic phonons has been reported. Here, this physical phenomenon is directly characterized for the first time through a novel approach combining both electrothermal and optothermal techniques. While the optical phonon temperature is determined from Raman wavenumber, the acoustic phonon temperature is precisely determined using high‐precision thermal conductivity and laser power absorption that are measured with negligible nonequilibrium among energy carriers. For graphene paper, the energy coupling factor between in‐plane optical and overall acoustic phonons is found at (1.59–3.10) × 1015W m−3K−1, agreeing well with the quantum mechanical modeling result of 4.1 × 1015W m−3K−1. Under ≈1 µm diameter laser heating, the optical phonon temperature rise is over 80% higher than that of the acoustic phonons. This observation points out the importance of subtracting optical–acoustic phonon thermal nonequilibrium in Raman‐based thermal characterization.more » « less
-
Free, publicly-accessible full text available September 1, 2026
-
Solving transient energy transport is crucial for accurately predicting the behavior of materials and devices during thermal cycling, pulsed heating, and transient operational states where heat generation and dissipation rates vary over time. Traditional methods, like the finite difference and element methods, discretize space and time and update temperature values at each grid point iteratively over time steps. Its straightforward implementation makes it popular for solving heat transfer problems. However, when high temporal and spatial resolutions or prolonged heating durations are required, the computational demand rises significantly, leading to significantly greater resource consumption. To address this, in this work we develop a new method termed Complex-modeling with Fourier Transform (CFT) that enables rapid and efficient simulations of transient energy transport problems. The CFT method decomposes the periodical heating problem into a complex-temperature energy transport problem with a single harmonic heat source. 1D and 3D transient heat conduction problems (conjugated with hot carrier transfer) are solved using the CFT method to demonstrate its effectiveness. The CFT method produces similar or higher accuracy results compared with the finite difference method, while the computational speed is increased by more than two orders of magnitude. We also developed a new method termed Complex-modeling with Fourier and Heaviside Transforms (CFHT) that can solve any transient energy transport problems with orders of magnitude speed increase. The CFT and CFHT methods developed in this work are applicable to linear problems that could involve mechanical, thermal, optical, and electrical responses.more » « less
-
Upon laser irradiation, 2D materials experience a cascading energy transfer from electrons to optical phonons (OPs) and then to acoustic phonons (APs), resulting in a significant thermal non-equilibrium among energy carriers. This non-equilibrium presents challenges for Raman-based thermal characterization, as Raman scattering measures only OP temperature rise, while APs are the primary energy carriers. Despite recent efforts to address this issue, OP–AP thermal non-equilibrium in supported 2D materials remains poorly resolved. Here, we develop a method to distinguish the OP and AP temperature rises based on their different temporal thermal responses under laser irradiation: the OP–AP temperature difference responds almost immediately (∼a few to tens of ps), while the AP temperature rise takes longer to establish (∼tens of ns). Using energy transport-state resolved Raman, we probe the transient thermal response of Si-supported nm-thick MoS2from 20 to 100 ns. We find that the OP–AP temperature difference exceeds 120% of the AP temperature rise under ∼0.439 µm radius laser heating. The intrinsic interfacial thermal conductance of the samples, based on the true AP temperature rise, varies from 0.199 to 1.46 MW·m−2·K−1, showing an increasing trend with sample thickness.more » « less
An official website of the United States government
