skip to main content


Search for: All records

Award ID contains: 2032464

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This work reports the dynamic behaviors of graphene aerogel (GA) microfibers during and after continuous wave (CW) laser photoreduction. The reduction results in one‐order of magnitude increase in the electrical conductivity. The experimental results reveal the exact mechanisms of photoreduction as it occurs: immediate photochemical removal of oxygen functional groups causing a sharp decrease in electrical resistance and subsequent laser heating that facilitates thermal rearrangement of GO sheets towards more graphene‐like domains. X‐ray and Raman spectroscopy analysis confirm that photoreduction removes virtually all oxygen and nitrogen containing functional groups. Interestingly, a dynamic period immediately following the end of laser exposure shows a slow, gradual increase in electrical resistance, suggesting that a proportion of the electrical conductivity enhancement from photoreduction is not permanent. A two‐part experiment monitoring the resistance changes in real‐time before and after photoreduction is conducted to investigate this critical period. The thermal diffusivity evolution of the microfiber is tracked and shows an improvement of 277 % after all photoreduction experiments. A strong linear coherency between thermal diffusivity and electrical conductivity is also uncovered. This is the first known work to explore both the dynamic electrical and thermal evolution of a GO‐based aerogel during and after photoreduction.

     
    more » « less
  2. Abstract

    Raman spectroscopy has been widely used to measure thermophysical properties of 2D materials. The local intense photon heating induces strong thermal nonequilibrium between optical and acoustic phonons. Both first principle calculations and recent indirect Raman measurements prove this phenomenon. To date, no direct measurement of the thermal nonequilibrium between optical and acoustic phonons has been reported. Here, this physical phenomenon is directly characterized for the first time through a novel approach combining both electrothermal and optothermal techniques. While the optical phonon temperature is determined from Raman wavenumber, the acoustic phonon temperature is precisely determined using high‐precision thermal conductivity and laser power absorption that are measured with negligible nonequilibrium among energy carriers. For graphene paper, the energy coupling factor between in‐plane optical and overall acoustic phonons is found at (1.59–3.10) × 1015W m−3K−1, agreeing well with the quantum mechanical modeling result of 4.1 × 1015W m−3K−1. Under ≈1 µm diameter laser heating, the optical phonon temperature rise is over 80% higher than that of the acoustic phonons. This observation points out the importance of subtracting optical–acoustic phonon thermal nonequilibrium in Raman‐based thermal characterization.

     
    more » « less
  3. Free, publicly-accessible full text available October 1, 2024
  4. Free, publicly-accessible full text available June 3, 2024
  5. In the last two decades, tremendous research has been conducted on the discovery, design and synthesis, characterization, and applications of two-dimensional (2D) materials. Thermal conductivity and interface thermal conductance/resistance of 2D materials are two critical properties in their applications. Raman spectroscopy, which measures the inelastic scattering of photons by optical phonons, can distinct a 2D material's temperature from its surrounding materials', featuring unprecedented spatial resolution (down to the atomic level). Raman-based thermometry has been used tremendously for characterizing the thermal conductivity of 2D materials (suspended or supported) and interface thermal conductance/resistance. Very large data deviations have been observed in literature, partly due to physical phenomena and factors not considered in measurements. Here, we provide a critical review, analysis, and perspectives about a broad spectrum of physical problems faced in Raman-based thermal characterization of 2D materials, namely interface separation, localized stress due to thermal expansion mismatch, optical interference, conjugated phonon, and hot carrier transport, optical–acoustic phonon thermal nonequilibrium, and radiative electron–hole recombination in monolayer 2D materials. Neglect of these problems will lead to a physically unreasonable understanding of phonon transport and interface energy coupling. In-depth discussions are also provided on the energy transport state-resolved Raman (ET-Raman) technique to overcome these problems and on future research challenges and needs. 
    more » « less
  6. Abstract Raman spectroscopy-based temperature sensing usually tracks the change of Raman wavenumber, linewidth and intensity, and has found very broad applications in characterizing the energy and charge transport in nanomaterials over the last decade. The temperature coefficients of these Raman properties are highly material-dependent, and are subjected to local optical scattering influence. As a result, Raman-based temperature sensing usually suffers quite large uncertainties and has low sensitivity. Here, a novel method based on dual resonance Raman phenomenon is developed to precisely measure the absolute temperature rise of nanomaterial (nm WS 2 film in this work) from 170 to 470 K. A 532 nm laser (2.33 eV photon energy) is used to conduct the Raman experiment. Its photon energy is very close to the excitonic transition energy of WS 2 at temperatures close to room temperature. A parameter, termed resonance Raman ratio (R3) Ω = I A 1g / I E 2g is introduced to combine the temperature effects on resonance Raman scattering for the A 1g and E 2g modes. Ω has a change of more than two orders of magnitude from 177 to 477 K, and such change is independent of film thickness and local optical scattering. It is shown that when Ω is varied by 1%, the temperature probing sensitivity is 0.42 K and 1.16 K at low and high temperatures, respectively. Based on Ω, the in-plane thermal conductivity ( k ) of a ∼25 nm-thick suspended WS 2 film is measured using our energy transport state-resolved Raman (ET-Raman). k is found decreasing from 50.0 to 20.0 Wm −1 K −1 when temperature increases from 170 to 470 K. This agrees with previous experimental and theoretical results and the measurement data using our FET-Raman. The R3 technique provides a very robust and high-sensitivity method for temperature probing of nanomaterials and will have broad applications in nanoscale thermal transport characterization, non-destructive evaluation, and manufacturing monitoring. 
    more » « less