- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Zhigunov, Dmitriy (2)
-
Grigoriev, Roman O (1)
-
Grigoriev, Roman O. (1)
-
Reynoso, Mateo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the absence of large-scale coherent structures, a widely used statistical theory of two-dimensional turbulence developed by Kraichnan, Leith, and Batchelor (KLB) predicts a power-law scaling for the energy,$$E(k)\propto k^\alpha$$with an integral exponent$$\alpha ={-3}$$, in the inertial range associated with the direct cascade. A power-law scaling is also observed in the presence of coherent structures, but the scaling exponent becomes fractal and often differs substantially from the value predicted by the KLB theory. Here we present a dynamical theory that sheds new light on the relationship between the spatial and temporal structure of the large-scale flow and the scaling of small-scale structures representing filamentary vorticity. Specifically, we find hyperbolic regions of the large-scale flow to play a key role in the flux of enstrophy between scales. Small-scale vorticity in these regions can be described by dynamically self-similar solutions of the Euler equation, which explains the power-law scaling. Furthermore, we find that correlations between different hyperbolic regions are responsible for the emergence of fractal scaling exponents.more » « less
-
Zhigunov, Dmitriy; Grigoriev, Roman O. (, Journal of Fluid Mechanics)This paper reports several new classes of unstable recurrent solutions of the two-dimensional Euler equation on a square domain with periodic boundary conditions. These solutions are in many ways analogous to recurrent solutions of the Navier–Stokes equation which are often referred to as exact coherent structures. In particular, we find that recurrent solutions of the Euler equation are dynamically relevant: they faithfully reproduce large-scale flows in simulations of turbulence at very high Reynolds numbers. On the other hand, these solutions have a number of properties which distinguish them from their Navier–Stokes counterparts. First of all, recurrent solutions of the Euler equation come in infinite-dimensional continuous families. Second, solutions of different types are connected, e.g. an equilibrium can be smoothly continued to a travelling wave or a time-periodic state. Third, and most important, they are only weakly unstable and, as a result, fully developed turbulence mimics some of these solutions remarkably frequently and over unexpectedly long temporal intervals.more » « less
An official website of the United States government
