skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2032678

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract One-second U.S. high vertical-resolution radiosonde data (HVRRD) contain two different sets of temperature data—the raw data and the processed data. The processed data have been subject to radiation corrections, which have been well documented, and smoothing, the details of which are proprietary to the radiosonde manufacturers. We have tried to characterize this smoothing by computing the root-mean-square (rms) of normalized temperature perturbations derived from removing a second-degree polynomial fit for altitude segments (Δz) from 100 m to 5 km. We find that for Δz= 100 m, rms values are larger at higher altitudes, are larger in the raw data than in the processed data, and are larger during daytime than during nighttime, for both the raw and processed data. The rms values and their daytime to nighttime differences are larger in the raw data than in the processed data. As Δzincreases toward 5 km, the geographical patterns of rms over the contiguous United States from both the raw and processed data start resembling previously published gravity wave total energy patterns obtained from the older 6-s U.S. radiosonde data. An example is shown of a discontinuity in the small-scale rms values when radiosonde instrumentation is changed, so it is concluded that small-scale temperature fluctuations will be different for different radiosonde instruments. Examples are shown of enhanced small-scale rms temperature values indicative of turbulence resulting from gravity wave critical levels and from enhanced gravity waves due to seasonal maxima in convection. Significance StatementWe have characterized the variability of the raw and processed temperature profiles of the U.S. high vertical resolution radiosonde data for various vertical scales. We have argued that sources of small-scale fluctuations in the processed data include turbulence and the radiation effects which have not been accounted for in the current derivation of the processed data. Temperature fluctuations of larger scales correspond to those from gravity waves. We have shown an example of a discontinuity in small-scale fluctuations at a radiosonde station when the instrumentation was changed. These results suggest that temperature fluctuations resulting from varying amounts of solar radiation falling on the temperature sensor as the radiosonde instrumentation swings and rotates should be evaluated for each radiosonde system. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract We have published a recent paper on differences between temperature fluctuations of various vertical scales in raw and processed U.S. high vertical resolution radiosonde data (HVRRD). In that paper, we note that the small-scale temperature fluctuations in the raw U.S. HVRRD are significantly larger than those in the processed U.S. HVRRD and that those small-scale temperature fluctuations are much larger during daytime that during nighttime. We believe that this is due to the varying amount of solar radiation falling on the radiosonde temperature sensor as the radiosonde instrument swings and rotates. In light of these new results, we present revisions to some of our conclusions about the climatology of atmospheric unstable layers. When we repeat our calculations of atmospheric unstable layers using the processed U.S. HVRRD, we find the following. 1) The 0000/1200 UTC differences in unstable layer occurrences in the lower stratosphere that were noted in our earlier paper essentially disappear. 2) The “notch” in the deep tropics where there is a relative deficiency of thin unstable layers and a corresponding excess of thicker layers is still a feature when processed data are analyzed, but the daytime notch is less marked when the processed data were used. 3) The discontinuity in unstable layer occurrences, when there was a change in radiosonde instrumentation, is still present when processed data are analyzed, but is diminished from what it was when the raw data were analyzed. Significance StatementIn a previous paper deriving the climatology of atmospheric unstable layers, we emphasized several findings. We reexamine three of the main points of that paper when processed U.S. high vertical resolution radiosonde data are analyzed instead of the raw data used in that previous paper. We find the 0000/1200 UTC differences virtually disappear in the new analysis. We find that the “notch” feature previously noted at Koror still exists, and we find that the discontinuity in unstable layers, when radiosonde instrumentation is changed, is diminished, but is still present in the new analysis. 
    more » « less
  3. Abstract A companion paper by Fritts et al. reviews evidence for Kelvin–Helmholtz instability (KHI) “tube” and “knot” (T&K) dynamics that appear to be widespread throughout the atmosphere. Here we describe the results of an idealized direct numerical simulation of multiscale gravity wave dynamics that reveals multiple larger- and smaller-scale KHI T&K events. The results enable assessments of the environments in which these dynamics arise and their competition with concurrent gravity wave breaking in driving turbulence and energy dissipation. A larger-scale event is diagnosed in detail and reveals diverse and intense T&K dynamics driving more intense turbulence than occurs due to gravity wave breaking in the same environment. Smaller-scale events reveal that KHI T&K dynamics readily extend to weaker, smaller-scale, and increasingly viscous shear flows. Our results suggest that KHI T&K dynamics should be widespread, perhaps ubiquitous, wherever superposed gravity waves induce intensifying shear layers, because such layers are virtually always present. A second companion paper demonstrates that KHI T&K dynamics exhibit elevated turbulence generation and energy dissipation rates extending to smaller Reynolds numbers for relevant KHI scales wherever they arise. These dynamics are suggested to be significant sources of turbulence and mixing throughout the atmosphere that are currently ignored or underrepresented in turbulence parameterizations in regional and global models. Significance StatementAtmospheric observations reveal that Kelvin–Helmholtz instabilities (KHI) often exhibit complex interactions described as “tube” and “knot” (T&K) dynamics in the presence of larger-scale gravity waves (GWs). These dynamics may prove to make significant contributions to energy dissipation and mixing that are not presently accounted for in large-scale modeling and weather prediction. We explore here the occurrence of KHI T&K dynamics in an idealized model that describes their behavior and character arising at larger and smaller scales due to superposed, large-amplitude GWs. The results reveal that KHI T&K dynamics arise at larger and smaller scales, and that their turbulence intensities can be comparable to those of the GWs. 
    more » « less
  4. Abstract Kjellstrand et al. (2022),https://10.1029/2021JD036232describes the evolution and dynamics of a strong, large‐scale Kelvin‐Helmholtz instability (KHI) event observed in polar mesospheric clouds (PMCs) on 12 July 2018 by high‐resolution imagers aboard the PMC Turbulence (PMC Turbo) stratospheric long‐duration balloon experiment. The imaging provides evidence of KH billow interactions and instabilities that are strongly influenced by gravity waves at larger scales. Specific features include initially separated regions of KHI, secondary convective and KH instabilities of individual billows, and “tubes” and “knots” that arise where billow cores are mis‐aligned or discontinuous along their axes. This study describes a direct numerical simulation of KH billow interactions in a periodic domain seeded with random initial noise that enables excitation of multiple KH billows exhibiting variable phase structures that capture multiple features of the observed KHI dynamics. Variable KH billow phases along their axes yield initial vortex tubes having diagonal alignments that link adjacent, but mis‐aligned, billow cores. Weak initial vortex tubes and billow cores having nearly orthogonal alignments amplify, interact strongly, and drive intense vortex knots at these sites. These vortex tube and knot (T&K) dynamics excite “twist waves” that unravel the initial vortex tubes, and drive increasingly strong vortex interactions and a cascade of energy and enstrophy to successively smaller scales in the turbulence inertial range. The implications of T&K dynamics are much more rapid and intense breakdown and decay of the KH billows, and significantly enhanced energy dissipation rates, where these interactions occur. 
    more » « less
  5. Abstract The Polar Mesospheric Cloud (PMC) Turbulence experiment performed optical imaging and Rayleigh lidar PMC profiling during a 6‐day flight in July 2018. A mosaic of seven imagers provided sensitivity to spatial scales from ∼20 m to 100 km at a ∼2‐s cadence. Lidar backscatter measurements provided PMC brightness profiles and enabled definition of vertical displacements of larger‐scale gravity waves (GWs) and smaller‐scale instabilities of various types. These measurements captured an interval of strong, widespread Kelvin‐Helmholtz instabilities (KHI) occurring over northeastern Canada on July 12, 2018 during a period of significant GW activity. This paper addresses the evolution of the KHI field and the characteristics and roles of secondary instabilities within the KHI. Results include the imaging of secondary KHI in the middle atmosphere and multiple examples of KHI “tube and knot” (T&K) dynamics where two or more KH billows interact. Such dynamics have been identified clearly only once in the atmosphere previously. Results reveal that KHI T&K arise earlier and evolve more quickly than secondary instabilities of uniform KH billows. A companion paper by Fritts et al. (2022),https://doi.org/10.1029/2021JD035834reveals that they also induce significantly larger energy dissipation rates than secondary instabilities of individual KH billows. The expected widespread occurrence of KHI T&K events may have important implications for enhanced turbulence and mixing influencing atmospheric structure and variability. 
    more » « less
  6. Abstract The spectral model turbulence analysis technique is widely used to derive kinetic energy dissipation rates of turbulent structures (ɛ) from different in situ measurements in the Earth's atmosphere. The essence of this method is to fit a model spectrum to measured spectra of velocity or scalar quantity fluctuations and thereby to deriveɛonly from wavenumber dependence of turbulence spectra. Owing to the simplicity of spectral model of Heisenberg (1948),https://doi.org/10.1007/bf01668899its application dominates in the literature. Making use of direct numerical simulations which are able to resolve turbulence spectra down to the smallest scales in dissipation range, we advance the spectral model technique by quantifying uncertainties for two spectral models, the Heisenberg (1948),https://doi.org/10.1007/bf01668899and the Tatarskii (1971) model, depending on (a) resolution of measurements, (b) stage of turbulence evolution, (c) model used. We show that the model of Tatarskii (1971) can yield more accurate results and reveals higher sensitivity to the lowestɛ‐values. This study shows that the spectral model technique can reliably deriveɛif measured spectra only resolve half‐decade of power change within the viscous (viscous‐convective) subrange. In summary, we give some practical recommendations on how to derive the most precise and detailed turbulence dissipation field from in situ measurements depending on their quality. We also supply program code of the spectral models used in this study in Python, IDL, and Matlab. 
    more » « less
  7. Abstract The 1-s-resolution U.S. radiosonde data are analyzed for unstable layers, where the potential temperature decreases with increasing altitude, in the troposphere and lower stratosphere (LS). Care is taken to exclude spurious unstable layers arising from noise in the soundings and also to allow for the destabilizing influence of water vapor in saturated layers. Riverton, Wyoming, and Greensboro, North Carolina, in the extratropics, are analyzed in detail, where it is found that the annual and diurnal variations are largest, and the interannual variations are smallest in the LS. More unstable layer occurrences in the LS at Riverton are found at 0000 UTC, while at Greensboro, more unstable layer occurrences in the LS are at 1200 UTC, consistent with a geographical pattern where greater unstable layer occurrences in the LS are at 0000 UTC in the western United States, while greater unstable layer occurrences are at 1200 UTC in the eastern United States. The picture at Koror, Palau, in the tropics is different in that the diurnal and interannual variations in unstable layer occurrences in the LS are largest, with much smaller annual variations. At Koror, more frequent unstable layer occurrences in the LS occur at 0000 UTC. Also, a “notch” in the frequencies of occurrence of thin unstable layers at about 12 km is observed at Koror, with large frequencies of occurrence of thick layers at that altitude. Histograms are produced for the two midlatitude stations and one tropical station analyzed. The log–log slopes for troposphere histograms are in reasonable agreement with earlier results, but the LS histograms show a steeper log–log slope, consistent with more thin unstable layers and fewer thick unstable layers there. Some radiosonde stations are excluded from this analysis since a marked change in unstable layer occurrences was identified when a change in radiosonde instrumentation occurred. 
    more » « less
  8. Fritts et al. (J. Fluid Mech., vol. xx, 2022, xx) describe a direct numerical simulation of interacting Kelvin–Helmholtz instability (KHI) billows arising due to initial billow cores that exhibit variable phases along their axes. Such KHI exhibit strong ‘tube and knot’ dynamics identified in early laboratory studies by Thorpe ( Geophys. Astrophys. Fluid Dyn. , vol. 34, 1985, pp. 175–199). Thorpe ( Q.J.R. Meteorol. Soc. , vol. 128, 2002, pp. 1529–1542) noted that these dynamics may be prevalent in the atmosphere, and they were recently identified in atmospheric observations at high altitudes. Tube and knot dynamics were found by Fritts et al. ( J. Fluid. Mech. , 2022) to drive stronger and faster turbulence transitions than secondary instabilities of individual KH billows. Results presented here reveal that KHI tube and knot dynamics also yield energy dissipation rates $$\sim$$ 2–4 times larger as turbulence arises and that remain $$\sim$$ 2–3 times larger to later stages of the flow evolution, compared with those of secondary convective instabilities (CI) and secondary KHI accompanying KH billows without tube and knot influences. Elevated energy dissipation rates occur due to turbulence transitions by tube and knot dynamics arising on much larger scales than secondary CI and KHI where initial KH billows are misaligned. Tube and knot dynamics also excite large-scale Kelvin ‘twist waves’ that cause vortex tube and billow core fragmentation, more energetic cascades of similar interactions to smaller scales and account for the strongest energy dissipation events accompanying such KH billow evolutions. 
    more » « less
  9. We perform a direct numerical simulation (DNS) of interacting Kelvin–Helmholtz instabilities (KHI) that arise at a stratified shear layer where KH billow cores are misaligned or exhibit varying phases along their axes. Significant evidence of these dynamics in early laboratory shear-flow studies by Thorpe ( Geophys. Astrophys. Fluid Dyn. , vol. 34, 1985, pp. 175–199) and Thorpe ( J. Geophys. Res. , vol. 92, 1987, pp. 5231–5248), in observations of KH billow misalignments in tropospheric clouds (Thorpe, Q. J. R. Meteorol. Soc. , vol. 128, 2002, pp. 1529–1542) and in recent direct observations of such events in airglow and polar mesospheric cloud imaging in the upper mesosphere reveals that these dynamics are common. More importantly, the laboratory and mesospheric observations suggest that these dynamics lead to more rapid and more intense instabilities and turbulence than secondary convective instabilities in billow cores and secondary KHI in stratified braids between and around adjacent billows. To date, however, no simulations exploring the dynamics and energetics of interacting KH billows (apart from pairing) have been performed. Our DNS performed for Richardson number $Ri=0.10$ and Reynolds number $Re=5000$ demonstrates that KHI tubes and knots (i) comprise strong and complex vortex interactions accompanying misaligned KH billows, (ii) accelerate the transition to turbulence relative to secondary instabilities of individual KH billows, (iii) yield significantly stronger turbulence than secondary KHI in billow braids and secondary convective instabilities in KHI billow cores and (iv) expand the suite of secondary instabilities previously recognized to contribute to KHI dynamics and breakdown to turbulence in realistic geophysical environments. 
    more » « less