skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2033932

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we argue that, as HCI becomes more multimodal with the integration of gesture, gaze, posture, and other nonverbal behavior, it is important to understand the role played by affordances and their associated actions in human-object interactions (HOI), so as to facilitate reasoning in HCI and HRI environments. We outline the requirements and challenges involved in developing a multimodal semantics for human-computer and human-robot interactions. Unlike unimodal interactive agents (e.g., text-based chatbots or voice-based personal digital assistants), multimodal HCI and HRI inherently require a notion of embodiment, or an understanding of the agent’s placement within the environment and that of its interlocutor. We present a dynamic semantics of the language, VoxML, to model human-computer, human-robot, and human-human interactions by creating multimodal simulations of both the communicative content and the agents’ common ground, and show the utility of VoxML information that is reified within the environment on computational understanding of objects for HOI. 
    more » « less
  2. We present a five-year retrospective on the development of the VoxWorld platform, first introduced as a multimodal platform for modeling motion language, that has evolved into a platform for rapidly building and deploying embodied agents with contextual and situational awareness, capable of interacting with humans in multiple modalities, and exploring their environments. In particular, we discuss the evolution from the theoretical underpinnings of the VoxML modeling language to a platform that accommodates both neural and symbolic inputs to build agents capable of multimodal interaction and hybrid reasoning. We focus on three distinct agent implementations and the functionality needed to accommodate all of them: Diana, a virtual collaborative agent; Kirby, a mobile robot; and BabyBAW, an agent who self-guides its own exploration of the world. 
    more » « less