skip to main content


Search for: All records

Award ID contains: 2034870

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Double auction mechanisms have been designed to trade a variety of divisible resources (e.g., electricity, mobile data, and cloud resources) among distributed agents. In such divisible double auction, all the agents (both buyers and sellers) are expected to submit their bid profiles, and dynamically achieve the best responses. In practice, these agents may not trust each other without a market mediator. Fortunately, smart contract is extensively used to ensure digital agreement among mutually distrustful agents. The consensus protocol helps the smart contract execution on the blockchain to ensure strong integrity and availability. However, severe privacy risks would emerge in the divisible double auction since all the agents should disclose their sensitive data such as the bid profiles (i.e., bid amount and prices in different iterations) to other agents for resource allocation and such data are replicated on all the nodes in the network. Furthermore, the consensus requirements will bring a huge burden for the blockchain, which impacts the overall performance. To address these concerns, we propose a hybridized TEE-Blockchain system (system and auction mechanism co-design) to privately execute the divisible double auction. The designed hybridized system ensures privacy, honesty and high efficiency among distributed agents. The bid profiles are sealed for optimally allocating divisible resources while ensuring truthfulness with a Nash Equilibrium. Finally, we conduct experiments and empirical studies to validate the system and auction performance using two real-world applications.

     
    more » « less
  2. Free, publicly-accessible full text available August 1, 2024
  3. Vertical Federated Learning (FL) is a new paradigm that enables users with non-overlapping attributes of the same data samples to jointly train a model without directly sharing the raw data. Nevertheless, recent works show that it's still not sufficient to prevent privacy leakage from the training process or the trained model. This paper focuses on studying the privacy-preserving tree boosting algorithms under the vertical FL. The existing solutions based on cryptography involve heavy computation and communication overhead and are vulnerable to inference attacks. Although the solution based on Local Differential Privacy (LDP) addresses the above problems, it leads to the low accuracy of the trained model. This paper explores to improve the accuracy of the widely deployed tree boosting algorithms satisfying differential privacy under vertical FL. Specifically, we introduce a framework called OpBoost. Three order-preserving desensitization algorithms satisfying a variant of LDP called distance-based LDP (dLDP) are designed to desensitize the training data. In particular, we optimize the dLDP definition and study efficient sampling distributions to further improve the accuracy and efficiency of the proposed algorithms. The proposed algorithms provide a trade-off between the privacy of pairs with large distance and the utility of desensitized values. Comprehensive evaluations show that OpBoost has a better performance on prediction accuracy of trained models compared with existing LDP approaches on reasonable settings. Our code is open source. 
    more » « less