- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Breuer, Kenneth (2)
-
Das, Asimanshu (2)
-
Mathai, Varghese (2)
-
Breuer, Kenneth S. (1)
-
Mittal, Rajat (1)
-
Naylor, Dante L. (1)
-
Seo, Jung Hee (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mittal, Rajat; Breuer, Kenneth; Seo, Jung Hee (, Annual Review of Fluid Mechanics)Although face masks have been used for over a century to provide protection against airborne pathogens and pollutants, close scrutiny of their effectiveness has peaked in the past two years in response to the COVID-19 pandemic. The simplicity of face masks belies the complexity of the physical phenomena that determine their effectiveness as a defense against airborne infections. This complexity is rooted in the fact that the effectiveness of face masks depends on the combined effects of respiratory aerodynamics, filtration flow physics, droplet dynamics and their interactions with porous materials, structural dynamics, physiology, and even human behavior. At its core, however, the face mask is a flow-handling device, and in the current review, we take a flow physics–centric view of face masks and the key phenomena that underlie their function. We summarize the state of the art in experimental measurements, as well as the growing body of computational studies that have contributed to our understanding of the factors that determine the effectiveness of face masks. The review also lays out some of the important open questions and technical challenges associated with the effectiveness of face masks.more » « less
-
Aerosol transmission in passenger car cabins: Effects of ventilation configuration and driving speedMathai, Varghese; Das, Asimanshu; Breuer, Kenneth (, Physics of Fluids)Identifying the potential routes of airborne transmission during transportation is of critical importance to limit the spread of the SARS-CoV-2 virus. Here, we numerically solve the Reynolds-averaged Navier–Stokes equations along with the transport equation for a passive scalar in order to study aerosol transmission inside the passenger cabin of an automobile. Extending the previous work on this topic, we explore several driving scenarios including the effects of having the windows fully open, half-open, and one-quarter open, the effect of opening a moon roof, and the scaling of the aerosol transport as a function of vehicle speed. The flow in the passenger cabin is largely driven by the external surface pressure distribution on the vehicle, and the relative concentration of aerosols in the cabin scales inversely with vehicle speed. For the simplified geometry studied here, we find that the half-open windows configuration has almost the same ventilation effectively as the one with the windows fully open. The utility of the moonroof as an effective exit vent for removing the aerosols generated within the cabin space is discussed. Using our results, we propose a “speed–time” map, which gives guidance regarding the relative risk of transmission between driver and passenger as a function of trip duration and vehicle speed. A few strategies for the removal of airborne contaminants during low-speed driving, or in a situation where the vehicle is stuck in traffic, are suggested.more » « less
An official website of the United States government
