skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2035176

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Improved energy performance and occupant comfort are driving building design decisions due to the increasing demand for sustainable and green buildings. However, despite the variety of technological developments in other fields, the range of solutions to improve building performance is limited. One of the main limitations for an early designer is a performance evaluation method to facilitate the design process. This paper offers a new shading performance optimization process that can help designers evaluate both daylighting and energy performance and generate optimized and flexible designs that can be further improved by implementing user-specific automation. The proposed performance optimization method utilizes parametric design, building simulation models, and Genetic Algorithms. Common shading design systems are explored through parametric design, and daylighting and energy modeling simulations are performed to evaluate shading device performance. Genetic Algorithms are used to identify design options with optimal energy and daylighting performance. A case study is conducted to verify the effectiveness of the overall process. Results are used to analyze the influence of design decisions among different shading designs. Finally, future directions in both shading design and energy optimization are presented. 
    more » « less
  2. null (Ed.)
    Buildings are subject to significant stresses due to climate change and design strategies for climate resilient buildings are rife with uncertainties which could make interpreting energy use distributions difficult and questionable. This study intends to enhance a robust and credible estimate of the uncertainties and interpretations of building energy performance under climate change. A four-step climate uncertainty propagation approach which propagates downscaled future weather file uncertainties into building energy use is examined. The four-step approach integrates dynamic building simulation, fitting a distribution to average annual weather variables, regression model (between average annual weather variables and energy use) and random sampling. The impact of fitting different distributions to the weather variable (such as Normal, Beta, Weibull, etc.) and regression models (Multiple Linear and Principal Component Regression) of the uncertainty propagation method on cooling and heating energy use distribution for a sample reference office building is evaluated. Results show selecting a full principal component regression model following a best-fit distribution for each principal component of the weather variables can reduce the variation of the output energy distribution compared to simulated data. The results offer a way of understanding compound building energy use distributions and parsing the uncertain nature of climate projections. 
    more » « less