skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2036064

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bias in neural network model training datasets has been observed to decrease prediction accuracy for groups underrepresented in training data. Thus, investigating the composition of training datasets used in machine learning models with healthcare applications is vital to ensure equity. Two such machine learning models are NetMHCpan-4.1 and NetMHCIIpan-4.0, used to predict antigen binding scores to major histocompatibility complex class I and II molecules, respectively. As antigen presentation is a critical step in mounting the adaptive immune response, previous work has used these or similar predictions models in a broad array of applications, from explaining asymptomatic viral infection to cancer neoantigen prediction. However, these models have also been shown to be biased toward hydrophobic peptides, suggesting the network could also contain other sources of bias. Here, we report the composition of the networks’ training datasets are heavily biased toward European Caucasian individuals and against Asian and Pacific Islander individuals. We test the ability of NetMHCpan-4.1 and NetMHCpan-4.0 to distinguish true binders from randomly generated peptides on alleles not included in the training datasets. Unexpectedly, we fail to find evidence that the disparities in training data lead to a meaningful difference in prediction quality for alleles not present in the training data. We attempt to explain this result by mapping the HLA sequence space to determine the sequence diversity of the training dataset. Furthermore, we link the residues which have the greatest impact on NetMHCpan predictions to structural features for three alleles (HLA-A*34:01, HLA-C*04:03, HLA-DRB1*12:02). 
    more » « less
  2. George Bebis, Terry Gaasterland (Ed.)
    Major Histocompability Complex (MHC) Class I molecules provide a pathway for cells to present endogenous peptides to the immune system, allowing it to distinguish healthy cells from those infected by pathogens. Software tools based on neural networks such as NetMHC and NetMHCpan predict whether peptides will bind to variants of MHC molecules. These tools are trained with experimental data, consisting of the amino acid sequence of peptides and their observed binding strength. Such tools generally do not explicitly consider hydrophobicity, a significant biochemical factor relevant to peptide binding. It was observed that these tools predict that some highly hydrophobic peptides will be strong binders, which biochemical factors suggest is incorrect. This paper investigates the correlation of the hydrophobicity of 9-mer peptides with their predicted binding strength to the MHC variant HLA-A*0201 for these software tools. Two studies were performed, one using the data that the neural networks were trained on and the other using a sample of the human proteome. A significant bias within NetMHC-4.0 towards predicting highly hydrophobic peptides as strong binders was observed in both studies. This suggests that hydrophobicity should be included in the training data of the neural networks. Retraining the neural networks with such biochemical annotations of hydrophobicity could increase the accuracy of their predictions, increasing their impact in applications such as vaccine design and neoantigen identification. 
    more » « less