skip to main content


Search for: All records

Award ID contains: 2036298

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The echinoid genus Tetrapygus was initially described by L. Agassiz (1841) based on a single species, Tetrapygus niger Molina, 1782. Since the extensive work conducted by Mortensen (1935), Tetrapygus has received limited taxonomic attention over the past century. Recent discoveries of new fossil species of Arbacia Gray, 1835 from the upper Pliocene of northern Chile revealed striking morphological similarities between the two distinct Arbaciidae genera Arbacia and Tetrapygus. These findings compelled new investigations to evaluate the taxonomic status of these genera. Based on molecular mitochondrial (COI), nuclear (28S), and morphological evidence, Tetrapygus niger is here recovered as the sister species to Arbacia dufresnii, both species forming a clade within the phylogeny of South American species of Arbacia. Consequently, the diagnosis and description of Tetrapygus niger are here revised, and the species is reattributed to Arbacia, as previously proposed by A. Agassiz in Agassiz & Desor (1846) under the species name Arbacia nigra. An emended diagnosis of Arbacia is also proposed in light of these new findings. 

     
    more » « less
    Free, publicly-accessible full text available November 22, 2024
  2. Abstract Evidence from the earliest-known crinoids (Tremadocian, Early Ordovician), called protocrinoids, is used to hypothesize initial steps by which elements of the calyx evolved. Protocrinoid calyces are composed of extraxial primary and surrounding secondary plates (both of which have epispires along their sutures) that are unlike those of more crownward fossil and extant crinoids in which equivalent calycinal plating is strongly organized. These reductions inspired several schemes by which to name the plates in these calyces. However, the primary-secondary systems seen in protocrinoids first appeared among Cambrian stem radial echinoderms, with primaries representing centers around which secondaries were sequentially added during ontogeny. Therefore, the protocrinoid calyx represents an intermediate condition between earliest echinoderms and crownward crinoids. Position and ontogeny indicate certain primaries remained as loss of secondaries occurred, resulting in abutting of primaries into the conjoined alternating circlets characteristic of crinoids. This transformative event included suppression of secondary plating and modification or, more commonly, elimination of respiratory structures. These data indicate subradial calyx plate terminology does not correspond with most common usage, but rather, supports an alternative redefinition of these traditional expressions. Extension and adoral growth of fixed rays during calyx ontogeny preceded conjoined primaries in earliest crinoids. Restriction with modification or elimination of calyx respiratory structures also accompanied this modification. Phylogenetic analyses strongly support crinoid origination from early pentaradiate echinoderms, separate from blastozoans. Accordingly, all Tremadocian crinoids express a distinctive aggregate of plesiomorphic and apomorphic commonalities; all branch early within the crinoid clade, separate from traditional subclass-level clades. Nevertheless, each taxon within this assemblage expresses at least one diagnostic apomorphy of camerate, cladid, or disparid clades. 
    more » « less
  3. Echinoids are key components of modern marine ecosystems. Despite a remarkable fossil record, the emergence of their crown group is documented by few specimens of unclear affinities, rendering their early history uncertain. The origin of sand dollars, one of its most distinctive clades, is also unclear due to an unstable phylogenetic context. We employ 18 novel genomes and transcriptomes to build a phylogenomic dataset with a near-complete sampling of major lineages. With it, we revise the phylogeny and divergence times of echinoids, and place their history within the broader context of echinoderm evolution. We also introduce the concept of a chronospace – a multidimensional representation of node ages – and use it to explore methodological decisions involved in time calibrating phylogenies. We find the choice of clock model to have the strongest impact on divergence times, while the use of site-heterogeneous models and alternative node prior distributions show minimal effects. The choice of loci has an intermediate impact, affecting mostly deep Paleozoic nodes, for which clock-like genes recover dates more congruent with fossil evidence. Our results reveal that crown group echinoids originated in the Permian and diversified rapidly in the Triassic, despite the relative lack of fossil evidence for this early diversification. We also clarify the relationships between sand dollars and their close relatives and confidently date their origins to the Cretaceous, implying ghost ranges spanning approximately 50 million years, a remarkable discrepancy with their rich fossil record. 
    more » « less
  4. A new species of clypeasterid sea biscuit, Clypeaster brigitteae n. sp., is described from material collected in the Philippines at depths between 100 and 200 m. The new taxon increases the number of Clypeaster species recorded from the Philippines to nine, representing nearly a quarter of the world’s diversity of the genus. Other Philippine species include: C. annandalei Koehler, 1922; C. fervens Koehler, 1922; C. humilis (Leske, 1778); C. japonicus Döderlein, 1885; C. latissimus (Lamarck, 1816); C. pateriformis Mortensen, 1948; C. reticulatus (Linnaeus, 1758); and C. virescens Döderlein, 1885. Using type material where available, each of these species is compared and contrasted with C. brigitteae n. sp. in tables consisting of new data derived from general test shape and size, petal structure, food grooves, plate architecture, internal structure, and morphology of spines, pedicellariae, and tube feet. 
    more » « less