skip to main content


Search for: All records

Award ID contains: 2036867

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Researchers have made headway against challenges of increasing cement infrastructure and low plastic recycling rates by using waste plastic in cementitious materials. Past studies indicate that microbially induced calcium carbonate precipitation (MICP) to coat plastic in calcium carbonate may improve the strength. The objective of this study was to increase the amount of clean and contaminated waste plastic that can be added to mortar and to assess whether MICP treatment enhances the strength. The performance of plastic-filled mortar was investigated at 5%, 10%, and 20% volume replacement for cement. Untreated, clean plastics at a 20% cement replacement produced compressive strengths acceptable for several applications. However, a coating of MICP on clean waste plastic did not improve the strengths. At 10% replacement, both MICP treatment and washing of contaminated plastics recovered compressive strengths by approximately 28%, relative to mortar containing oil-coated plastics. By incorporating greater volumes of waste plastics into mortar, the sustainability of cementitious composites has the potential of being improved by the dual mechanisms of reduced cement production and repurposing plastic waste.

     
    more » « less
  2. Free, publicly-accessible full text available January 17, 2025
  3. Material manufacturing accounts for more than 25% of global carbon emissions, primarily due to the manufacture of materials used in construction, vehicles, and machines. Replacement with materials manufactured in a more sustainable manner may greatly reduce energy needs worldwide. One way to reduce the carbon impact of engineering materials is to use living organisms to manufacture and/or maintain or augment material utility – a class of materials known as Engineered Living Materials (ELMs). However, ELMs are a relatively new concept, and several challenges must be overcome before this new class of materials can see broad application. Here, we discuss one of the greatest challenges in designing ELMs that can replace the most carbon intensive engineering materials: the need to achieve sufficient load bearing capacity. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  4. Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate. 
    more » « less