skip to main content


Search for: All records

Award ID contains: 2036944

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A glut of dinitrogen‐derived ammonia (NH3) over the past century has resulted in a heavily imbalanced nitrogen cycle and consequently, the large‐scale accumulation of reactive nitrogen such as nitrates in our ecosystems has led to detrimental environmental issues. Electrocatalytic upcycling of waste nitrogen back into NH3holds promise in mitigating these environmental impacts and reducing reliance on the energy‐intensive Haber–Bosch process. Herein, we report a high‐performance electrolyzer using an ultrahigh alkalinity electrolyte, NaOH−KOH−H2O, for low‐cost NH3electrosynthesis. At 3,000 mA/cm2, the device with a Fe−Cu−Ni ternary catalyst achieves an unprecedented faradaic efficiency (FE) of 92.5±1.5 % under a low cell voltage of 3.83 V; whereas at 1,000 mA/cm2, an FE of 96.5±4.8 % under a cell voltage of only 2.40 V was achieved. Techno‐economic analysis revealed that our device cuts the levelized cost of ammonia electrosynthesis by ~40 % ($30.68 for Fe−Cu−Ni vs. $48.53 for Ni foam per kmol‐NH3). The NaOH−KOH−H2O electrolyte together with the Fe−Cu−Ni ternary catalyst can enable the high‐throughput nitrate‐to‐ammonia applications for affordable and scalable real‐world wastewater treatments.

     
    more » « less
  2. There is a growing need to develop novel technologies that reduce reactive nitrogen concentrations in wastewater streams and decrease our reliance on fossil fuel energy required to produce N-based chemicals and fertilizers. This study conducts a techno-economic analysis (TEA) and a life cycle assessment (LCA) of the electrochemical conversion of nitrate ions (NO3–) present in wastewater to hydroxylamine (NH2OH), a valuable chemical intermediate. We employ experimental data and modeling assumptions to determine NH2OH production costs and life cycle emissions for a small-scale facility (producing 1500 kg-NH2OH/day) and a large-scale facility (producing 50,000 kg-NH2OH/day) integrated into a wastewater treatment plant. The present NH2OH production costs for the small- and large-scale facilities are estimated at $6.14/kg-NH2OH and $5.37/kg-NH2OH, respectively. The parameters dominating the electrochemical reactor cost are electrolyte, separations, and fixed cost, with their values as $1.48, $0.96, and $0.53/kg. Future cost reduction projections indicate that the present NH2OH production costs for the small- and large-scale facilities can be reduced to $2.79/kg-NH2OH and $2.06/kg-NH2OH (NH2OH market price = $1.72/kg), respectively, with improvements in the sensitivity analysis parameters. LCA results indicate that the proposed electrochemical pathway to produce NH2OH has lower life cycle impacts than the conventional pathway. 
    more » « less
  3. Reactive nitrogen (Nr) is an essential nutrient to life on earth, but its mismanagement in waste has emerged as a major problem in water pollution to our ecosystems, causing severe eutrophication and health concerns. Sustainably recovering Nr [such as nitrate (NO3−)–N] and converting it into ammonia (NH3) could mitigate the environmental impacts of Nr, while reducing the NH3 demand from the carbon-intensive Haber–Bosch process. In this work, high-performance NO3−-to-NH3 conversion was achieved in a scalable, versatile, and cost-effective membrane-free alkaline electrolyzer (MFAEL): a remarkable NH3partial current density of 4.22 ± 0.25 A cm−2 with a faradaic efficiency of 84.5 ± 4.9%. The unique configuration of MFAEL allows for the continuous production of pure NH3-based chemicals (NH3 solution and solid NH4HCO3) without the need for additional separation procedures. A comprehensive techno-economic analysis (TEA) revealed the economic competitiveness of upcycling waste N from dilute sources by combining NO3− reduction in MFAEL and a low-energy cost electrodialysis process for efficient NO3− concentration. In addition, pairing NO3− reduction with the oxidation of organic Nr compounds in MFAEL enables the convergent transformation of N–O and C–N bonds into NH3 as the sole N-containing product. Such an electricity-driven process offers an economically viable solution to the growing trend of regional and seasonal Nr buildup and increasing demand for sustainable NH3 with a reduced carbon footprint. 
    more » « less
  4. Motivated by the increasing demand for flexible and sustainable routes of ammonia (NH3) production, the electrochemical nitrogen (N2) and nitrate reduction reaction (NRR and NO3RR) have attracted intense research interest in the past few years1,2. Compared to the centralized Haber-Bosch process that operates at elevated temperature and pressure, the electrochemical pathway features mild operating conditions but high input energy density, allowing for distributed and on-site generation of NH3 with water as the proton source, thereby reducing the transportation and storage costs of NH3 and H23. Besides N2 which is highly abundant in the atmosphere, nitrate-N exists widely in agricultural and industrial wastewaters, and its presence has raised severe concerns due to its known impacts on the environment and human health4,5. In this regard, NO3RR provides a promising strategy of simultaneously removing the harmful nitrate-N and generating NH3 as a useful product from those wastewater streams. While research activities on both NRR and NO3RR are blooming with substantial progress in the field of electrocatalysis, some major challenges remain unnoticed or unresolved so far. Due to the wide existence of reactive N-containing species in laboratory environments, the source of NH3 in NRR measurements is sometimes elusive and requires rigorous examination by control experiments with costly 15N26,7. On the other hand, while the electro-reduction of nitrate is much more facile, additional costs arising from the enrichment and purification of nitrate in contaminated waste resources have challenged the practical feasibility of NO3RR both technically and economically2. In this talk, we will present our latest research progress as part of the solutions to these challenges in state-of-the-art NRR and NO3RR studies, from the perspective of reactor design. By taking advantage of the prior developments in 15N2 control experiments, here we suggest an improved 15N2 circulation system that is effective and affordable for NRR research, allowing for more accurate and economized quantitative assessment of NH3 origins, so that false positives and subtle catalytic activities can be identified more reliably. For NO3RR, we developed a compact reactor system for rapid and efficient electrochemical conversion of nitrate to NH3 from real nitrate-containing waste sources, accompanied by the concurrent separation and enrichment of the produced NH3 in a trapping solution to yield pure ammonium compounds. Our work highlights the importance of advanced reactor design in N-related electrochemistry research, which will facilitate the transformation of the current N-centric chemical industries towards a sustainable future. 
    more » « less
  5. Removing excessive nitrate (NO3−) from wastewater has increasingly become an important research topic in light of the growing concerns over the related environmental problems and health issues. In particular, catalytic/electrocatalytic approaches are attractive for NO3− removal, because NO3− from wastewater can be converted to N2 and released back to the atmosphere using renewable H2 or electricity, closing the loop of the global N cycle. However, achieving high product selectivity towards the desirable N2 has proven challenging in the direct NO3−-to-N2 reaction. In this presentation, we will report our finding on unique and ultra-high electrochemical NO3−-to-NO2−activity on an oxide-derived silver electrode (OD-Ag). Up to 98% selectivity and 95% faradaic efficiency of NO2− were observed and maintained under a wide potential window. Benefiting from overcoming the rate-determining barrier of NO3−-to-NO2−during nitrate reduction, further reduction of accumulated NO2− to NH4+ can be well regulated by the cathodic potential on OD-Ag to achieve a faradaic efficiency of 89%. These indicated the potential controllable pathway to the key nitrate reduction products (NO2−or NH4+) on OD-Ag. DFT computations provided insights into the unique NO2−selectivity on Ag electrodes compared with Cu, showing the critical role of a proton-assisted mechanism. Based on the ultra-high NO3−-to-NO2−activity on OD-Ag, we designed a novel electrocatalytic-catalytic combined process for denitrifying real-world NO3−-containing agricultural wastewater, leading to 95+% of NO3− conversion to N2 with minimal NOX gases. In addition to the wastewater treatment process to N2 and electrochemical synthesis of NH3, NO2− derived from electrocatalytic NO3− conversion can serve as a reactive platform for distributed production of various nitrogen products. Our new research progress along this direction will be briefly presented. 
    more » « less
  6. The nitrogen cycle plays a key role biological, energy, environment, and industrial processes. Breaking natural nitrogen cycle is leading to accumulation of reactive nitrogen chemicals in water and atmosphere, therefore, better management of N-cycle has emerged as an urgent research need in energy and environmental science. Removing excessive nitrate (NO3−) from wastewater has increasingly become an important research topic in light of the growing concerns over the related environmental problems and health issues. In particular, catalytic/electrocatalytic approaches are attractive for NO3− removal, because NO3− from wastewater can be converted to N2 and released back to the atmosphere using renewable H2 or electricity, closing the loop of the global N cycle. However, achieving high product selectivity towards the desirable N2 has proven challenging in the direct NO3−-to-N2 reaction. In this presentation, we will report our finding on unique and ultra-high electrochemical NO3−-to-NO2−activity on an oxide-derived silver electrode (OD-Ag). Up to 98% selectivity and 95% faradaic efficiency of NO2− were observed and maintained under a wide potential window. Benefiting from overcoming the rate-determining barrier of NO3−-to-NO2−during nitrate reduction, further reduction of accumulated NO2− to NH4+ can be well regulated by the cathodic potential on OD-Ag to achieve a faradaic efficiency of 89%. These indicated the potential controllable pathway to the key nitrate reduction products (NO2−or NH4+) on OD-Ag. DFT computations provided insights into the unique NO2−selectivity on Ag electrodes compared with Cu, showing the critical role of a proton-assisted mechanism. Based on the ultra-high NO3−-to-NO2−activity on OD-Ag, we designed a novel electrocatalytic-catalytic combined process for denitrifying real-world NO3−-containing agricultural wastewater, leading to 95+% of NO3− conversion to N2 with minimal NOx gases. Importantly, NO2− derived from nitrate may serve as a crucial reactive platform for distributed production of various nitrogen products, such as NO, NH2OH, NH3, and urea. 
    more » « less
  7. null (Ed.)
  8. In our study, an exceptionally high selectivity of the electrocatalytic nitrate-to-nitrite transformation was discovered on Ag surfaces, among eighteen metals screened. It was demonstrated that this electrocatalytic step on oxide-derived Ag (OD-Ag), which possesses extended surface area (13 times) and enhanced specific activity (3 times) relative to Ag foil, can be coupled with a catalytic nitrite-to-dinitrogen step on a Pd catalyst using renewable hydrogen generated on-site by a water electrolyzer. We thereby proposed and demonstrated a combined electrocatalytic-catalytic process as an alternative strategy for innovative nitrate removal from agricultural wastewater with high selectivity of >95%. With future research and development, the combined process may hold the potential of tackling the ever-increasing nitrate pollution in water bodies to address its linked environmental and health issues. Strategically returning reactive nitrogen from wastewater back to the atmosphere in the inert form, this combined process is well-positioned to help close the global nitrogen cycle, one of the grand engineering challenges in the 21st century. In parallel with the applications in wastewater treatment, the Ag-based electrocatalytic nitrate-to-nitrate conversion with ultrahigh selectivity may be widely employed for designing cost-effective and energy-efficient syntheses of various nitrogen-based compounds in a distributed manufacturing fashion. The kinetics studies and computational insights could also be beneficial to advancing nitrogen-centric electrochemistry, materials science, and technologies. 
    more » « less