Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> The existence of barren plateaus has recently revealed new training challenges in quantum machine learning (QML). Uncovering the mechanisms behind barren plateaus is essential in understanding the scope of problems that QML can efficiently tackle. Barren plateaus have recently been shown to exist when learning global properties of random unitaries, which is relevant when learning black hole dynamics. Establishing whether local cost functions can circumvent these barren plateaus is pertinent if we hope to apply QML to quantum many-body systems. We prove a no-go theorem showing that local cost functions encounter barren plateaus in learning random unitary properties.more » « less
-
Simulations of nuclear magnetic resonance (NMR) experiments can be an important tool for extracting information about molecular structure and optimizing experimental protocols but are often intractable on classical computers for large molecules such as proteins and for protocols such as zero-field NMR. We demonstrate the first quantum simulation of an NMR spectrum, computing the zero-field spectrum of the methyl group of acetonitrile using four qubits of a trapped-ion quantum computer. We reduce the sampling cost of the quantum simulation by an order of magnitude using compressed sensing techniques. We show how the intrinsic decoherence of NMR systems may enable the zero-field simulation of classically hard molecules on relatively near-term quantum hardware and discuss how the experimentally demonstrated quantum algorithm can be used to efficiently simulate scientifically and technologically relevant solid-state NMR experiments on more mature devices. Our work opens a practical application for quantum computation.more » « less
-
We introduce a framework to study discrete-variable (DV) quantum systems based on qudits. It relies on notions of a mean state (MS), a minimal stabilizer-projection state (MSPS), and a new convolution. Some interesting consequences are: The MS is the closest MSPS to a given state with respect to the relative entropy; the MS is extremal with respect to the von Neumann entropy, demonstrating a “maximal entropy principle in DV systems.” We obtain a series of inequalities for quantum entropies and for Fisher information based on convolution, giving a “second law of thermodynamics for quantum convolutions.” We show that the convolution of two stabilizer states is a stabilizer state. We establish a central limit theorem, based on iterating the convolution of a zero-mean quantum state, and show this converges to its MS. The rate of convergence is characterized by the “magic gap,” which we define in terms of the support of the characteristic function of the state. We elaborate on two examples: the DV beam splitter and the DV amplifier.more » « less
-
We study the spatiotemporal spreading of correlations in an ensemble of spins due to dissipation characterized by short- and long-range spatial profiles. Such emission channels can be synthesized with tunable spatial profiles in lossy cavity QED experiments using a magnetic field gradient and a Raman drive with multiple sidebands. We consider systems initially in an uncorrelated state, and find that correlations widen and contract in a novel pattern intimately related to both the dissipative nature of the dynamical channel and its spatial profile. Additionally, we make a methodological contribution by generalizing nonequilibrium spin-wave theory to the case of dissipative systems and derive equations of motion for any translationally invariant spin chain whose dynamics can be described by a combination of Hamiltonian interactions and dissipative Lindblad channels. Our work aims at extending the study of correlation dynamics to purely dissipative quantum simulators and compare them with the established paradigm of correlations spreading in Hamiltonian systems.more » « less
An official website of the United States government
