- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Miyake, Akimasa (3)
-
Zhao, Andrew (2)
-
Corbett, Benjamin (1)
-
Rubin, Nicholas C. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Estimating expectation values is a key subroutine in quantum algorithms. Near-term implementations face two major challenges: a limited number of samples required to learn a large collection of observables, and the accumulation of errors in devices without quantum error correction. To address these challenges simultaneously, we develop a quantum error-mitigation strategy calledsymmetry-adjusted classical shadows, by adjusting classical-shadow tomography according to how symmetries are corrupted by device errors. As a concrete example, we highlight global U(1) symmetry, which manifests in fermions as particle number and in spins as total magnetization, and illustrate their group-theoretic unification with respective classical-shadow protocols. We establish rigorous sampling bounds under readout errors obeying minimal assumptions, and perform numerical experiments with a more comprehensive model of gate-level errors derived from existing quantum processors. Our results reveal symmetry-adjusted classical shadows as a low-cost strategy to mitigate errors from noisy quantum experiments in the ubiquitous presence of symmetry.more » « less
-
Corbett, Benjamin; Miyake, Akimasa (, Physical Review B)Explicitly correlated methods, such as the transcorrelated method which shifts a Jastrow or Gutzwiller correlator from the wave function to the Hamiltonian, are designed for high-accuracy calculations of electronic structures, but their application to larger systems has been hampered by the computational cost. We develop improved techniques for the transcorrelated density-matrix renormalization group (DMRG), in which the ground state of the transcorrelated Hamiltonian is represented as a matrix product state (MPS), and demonstrate large-scale calculations of the ground-state energy of the two-dimensional Fermi-Hubbard model. Our developments stem from three technical inventions: (i) constructing matrix product operators (MPOs) of transcorrelated Hamiltonians with low bond dimension and high sparsity, (ii) exploiting the entanglement structure of the ground states to increase the accuracy of the MPS representation, and (iii) optimizing the nonlinear parameter of the Gutzwiller correlator to mitigate the nonvariational nature of the transcorrelated method. We examine systems of size up to 12×12 lattice sites, four times larger than previous transcorrelated DMRG studies, and demonstrate that transcorrelated DMRG yields significant improvements over standard nontranscorrelated DMRG for equivalent computational effort. Transcorrelated DMRG reduces the error of the ground-state energy by 2.4×–14×, with the smallest improvement seen for a small system at half filling and the largest improvement in a dilute closed-shell system.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Zhao, Andrew; Rubin, Nicholas C.; Miyake, Akimasa (, Physical Review Letters)
An official website of the United States government
