skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2038449

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In contrast to the large volume of studies on the impact of horizontal resolution in oceanic general circulation models (OGCMs), the impact of vertical resolution has been largely overlooked and there is no consensus on how one should construct the vertical grid to represent the vertical structure of the baroclinic modes as well as the distribution of distinct water masses throughout the global ocean. In this paper, we document the importance of vertical resolution in the representations of vertical modes and water masses in the North Atlantic and show i) that vertical resolution is unlikely to undermine the resolution capability of the horizontal grid in representing the vertical modes and a 32-layer isopycnal configuration is adequate to represent the first five baroclinic modes in mid-latitudes and ii) that vertical resolution should focus on representing water masses. A coarse vertical resolution (16-layer) simulation exhibits virtually no transport in the dense overflow water which leads to a weaker and significantly shallower Atlantic meridional overturning circulation (AMOC) despite resolving the first baroclinic mode throughout the domain, whereas there are overall very small differences in the subtropical and subpolar North Atlantic circulation in the simulations with finer vertical resolution (24 to 96 layers). We argue that accurately representing the water masses is more important than representing the baroclinic modes for an OGCM in modeling the low-frequency large-scale circulation. 
    more » « less