skip to main content


Search for: All records

Award ID contains: 2038493

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work proposes an algorithm to bound the minimum distance between points on trajectories of a dynamical system and points on an unsafe set. Prior work on certifying safety of trajectories includes barrier and density methods, which do not provide a margin of proximity to the unsafe set in terms of distance. The distance estimation problem is relaxed to a Monge-Kantorovich-type optimal transport problem based on existing occupation-measure methods of peak estimation. Specialized programs may be developed for polyhedral norm distances (e.g. L1 and Linfinity) and for scenarios where a shape is traveling along trajectories (e.g. rigid body motion). The distance estimation problem will be correlatively sparse when the distance objective is separable. 
    more » « less
    Free, publicly-accessible full text available August 28, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Systems consisting of interacting agents are prevalent in the world, ranging from dynamical systems in physics to complex biological networks. To build systems which can interact robustly in the real world, it is thus important to be able to infer the precise interactions governing such systems. Existing approaches typically dis- cover such interactions by explicitly modeling the feed-forward dynamics of the trajectories. In this work, we propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions that enables greater flexibility in trajectory modeling: it discovers a set of relational potentials, represented as energy functions, which when minimized reconstruct the original trajectory. NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed. We illustrate that with these representations NIIP displays unique capabilities in test-time. First, it allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting. Additionally, it allows adding external hand-crafted potentials at test-time. Finally, NIIP enables the detection of out-of-distribution samples and anomalies without explicit training. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. Matni, N ; Morari, M ; Pappas, G.J. (Ed.)
    One of the long-term objectives of Machine Learning is to endow machines with the capacity of structuring and interpreting the world as we do. This is particularly challenging in scenes involving time series, such as video sequences, since seemingly different data can correspond to the same underlying dynamics. Recent approaches seek to decompose video sequences into their composing objects, attributes and dynamics in a self-supervised fashion, thus simplifying the task of learning suitable features that can be used to analyze each component. While existing methods can successfully disentangle dynamics from other components, there have been relatively few efforts in learning parsimonious representations of these underlying dynamics. In this paper, motivated by recent advances in non-linear identification, we propose a method to decompose a video into moving objects, their attributes and the dynamic modes of their trajectories. We model video dynamics as the output of a Koopman operator to be learned from the available data. In this context, the dynamic information contained in the scene is encapsulated in the eigenvalues and eigenvectors of the Koopman operator, providing an interpretable and parsimonious representation. We show that such decomposition can be used for instance to perform video analytics, predict future frames or generate synthetic video. We test our framework in a variety of datasets that encompass different dynamic scenarios, while illustrating the novel features that emerge from our dynamic modes decomposition: Video dynamics interpretation and user manipulation at test-time. We successfully forecast challenging object trajectories from pixels, achieving competitive performance while drawing useful insights. 
    more » « less
  5. Systems consisting of interacting agents are prevalent in the world, ranging from dynamical systems in physics to complex biological networks. To build systems which can interact robustly in the real world, it is thus important to be able to infer the precise interactions governing such systems. Existing approaches typically discover such interactions by explicitly modeling the feed-forward dynamics of the trajectories. In this work, we propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions that enables greater flexibility in trajectory modeling: it discovers a set of relational potentials, represented as energy functions, which when minimized reconstruct the original trajectory. NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed. We illustrate that with these representations NIIP displays unique capabilities in test-time. First, it allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting. Additionally, it allows adding external hand-crafted potentials at test-time. Finally, NIIP enables the detection of out-of-distribution samples and anomalies without explicit training. 
    more » « less