skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2038704

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Wildlife ecologists throughout the world strive to monitor trends in population abundance to help manage wildlife populations and conserve species at risk. Spatial capture–recapture studies are the gold standard for monitoring density, yet they can be difficult to apply because researchers must be able to distinguish all detected individuals. Spatial mark–resight (SMR) models only require a subset of the population to be marked and identifiable. Recent advances in SMR models with radio‐collared animals required a two‐staged analysis. We developed a one‐stage generalized SMR (gSMR) model that used detection histories of marked and unmarked animals in a single analysis. We used simulations to assess the performance of one‐ and two‐stage gSMR models. We then applied the one‐stage gSMR with telemetry and remote camera data to estimate grizzly bear (Ursus arctos) abundance from 2012 to 2023 within the Canadian Rocky Mountains. We estimated abundance trends for the population and reproductive females (females with cubs of the year). Simulations suggest that one‐ and two‐stage models performed equally well. One‐stage models are more dependable as they use exact likelihoods, whereas two‐stage models have shorter computation times for large data sets. Both methods had >95% credible interval coverage and minimal bias. Increasing the number of marked animals increased the accuracy and precision of abundance estimates, and ≥10 marked animals were required to obtain coefficients of variation <20% in most scenarios. The grizzly bear population increased slightly (growth rate λmean = 1.02) to a 2023 density of 10.4 grizzly bears/1000 km2. Reproductive female abundance had high interannual variability and increased to 1.0 bears/1000 km2. Population density was highest within protected areas, within high‐quality habitat and far from paved roads. The density of activity centers declined near paved roads over time. Mechanisms of decline may have included direct mortality and shifting activity centers to avoid human activity. Our study demonstrates the influence of human activity on localized density and the importance of protected areas for carnivore conservation. Finally, our study highlights the widespread utility of remote camera and telemetry‐based SMR models for monitoring spatiotemporal trends in abundance. 
    more » « less
  2. Abstract Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence. 
    more » « less
  3. Abstract Migration is an adaptive life‐history strategy across taxa that helps individuals maximise fitness by obtaining forage and avoiding predation risk. The mechanisms driving migratory changes are poorly understood, and links between migratory behaviour, space use, and demographic consequences are rare.Here, we use a nearly 20‐year record of individual‐based monitoring of a large herbivore, elk (Cervus canadensis) to test hypotheses for changing patterns of migration in and adjacent to a large protected area in Banff National Park (BNP), Canada.We test whether bottom‐up (forage quality) or top‐down (predation risk) factors explained trends in (i) the proportion of individuals using 5 different migratory tactics, (ii) differences in survival rates of migratory tactics during migration and whilst on summer ranges, (iii) cause‐specific mortality by wolves and grizzly bears, and (iv) population abundance.We found dramatic shifts in migration consistent with behavioural plasticity in individual choice of annual migratory routes. Shifts were inconsistent with exposure to the bottom‐up benefits of migration. Instead, exposure to landscape gradients in predation risk caused by exploitation outside the protected area drove migratory shifts. Carnivore exploitation outside the protected area led to higher survival rates for female elk remaining resident or migrating outside the protected area.Cause‐specific mortality aligned with exposure to predation risk along migratory routes and summer ranges. Wolf predation risk was higher on migratory routes than summer ranges of montane‐migrant tactics, but wolf predation risk traded‐off with heightened risk from grizzly bears on summer ranges. A novel eastern migrant tactic emerged following a large forest fire that enhanced forage in an area with lower predation risk outside of the protected area.The changes in migratory behaviour translated to population abundance, where abundance of the montane‐migratory tactics declined over time. The presence of diverse migratory life histories maintained a higher total population abundance than would have been the case with only one migratory tactic in the population.Our study demonstrates the complex ways in which migratory populations change over time through behavioural plasticity and associated demographic consequences because of individuals balancing predation risk and forage trade‐offs. 
    more » « less
  4. Abstract There is growing evidence that prey perceive the risk of predation and alter their behavior in response, resulting in changes in spatial distribution and potential fitness consequences. Previous approaches to mapping predation risk across a landscape quantify predator space use to estimate potential predator‐prey encounters, yet this approach does not account for successful predator attack resulting in prey mortality. An exception is a prey kill site that reflects an encounter resulting in mortality, but obtaining information on kill sites is expensive and requires time to accumulate adequate sample sizes.We illustrate an alternative approach using predator scat locations and their contents to quantify spatial predation risk for elk(Cervus canadensis) from multiple predators in the Rocky Mountains of Alberta, Canada. We surveyed over 1300 km to detect scats of bears (Ursus arctos/U.americanus), cougars (Puma concolor), coyotes (Canis latrans), and wolves (C.lupus). To derive spatial predation risk, we combined predictions of scat‐based resource selection functions (RSFs) weighted by predator abundance with predictions that a predator‐specific scat in a location contained elk. We evaluated the scat‐based predictions of predation risk by correlating them to predictions based on elk kill sites. We also compared scat‐based predation risk on summer ranges of elk following three migratory tactics for consistency with telemetry‐based metrics of predation risk and cause‐specific mortality of elk.We found a strong correlation between the scat‐based approach presented here and predation risk predicted by kill sites and (r = .98,p < .001). Elk migrating east of the Ya Ha Tinda winter range were exposed to the highest predation risk from cougars, resident elk summering on the Ya Ha Tinda winter range were exposed to the highest predation risk from wolves and coyotes, and elk migrating west to summer in Banff National Park were exposed to highest risk of encountering bears, but it was less likely to find elk in bear scats than in other areas. These patterns were consistent with previous estimates of spatial risk based on telemetry of collared predators and recent cause‐specific mortality patterns in elk.A scat‐based approach can provide a cost‐efficient alternative to kill sites of quantifying broad‐scale, spatial patterns in risk of predation for prey particularly in multiple predator species systems. 
    more » « less
  5. Free, publicly-accessible full text available January 1, 2026
  6. The reintroduction of extirpated species is a frequent tactic in rewilding projects because of the functional role species play in maintaining ecosystem health. Despite their potential to benefit both ecosystems and society, however, most well-known species reintroductions have adopted an eco-centric, “nature-in-people-out” approach. Rewilding theory and practitioners acknowledge that ignoring the role Indigenous people did and might once again play in shaping the distribution, abundance, movements, behavior, and health of wild species and ecosystems, is limiting. In this case study, we describe the technical steps we took and how Indigenous knowledge, ceremony, and cultural monitoring were woven into the recent reintroduction of plains bison to Canada’s Banff National Park. Six years later, the reintroduced bison herd has grown from 16 to >100 animals, ranges mostly within 30 km of the release site, and, if current growth continues, will likely be managed with Indigenous harvesting. Transboundary bison policy differences are shifting and may lead to bison being more sustainable. The ecocultural approach, therefore, has increased the resilience of our rewilding project. 
    more » « less
  7. COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide. 
    more » « less
  8. Abstract Background Global increases in human activity threaten connectivity of animal habitat and populations. Protection and restoration of wildlife habitat and movement corridors require robust models to forecast the effects of human activity on movement behaviour, resource selection, and connectivity. Recent research suggests that animal resource selection and responses to human activity depend on their behavioural movement state, with increased tolerance for human activity in fast states of movement. Yet, few studies have incorporated state-dependent movement behaviour into analyses of Merriam connectivity, that is individual-based metrics of connectivity that incorporate landscape structure and movement behaviour. Methods We assessed the cumulative effects of anthropogenic development on multiple movement processes including movement behaviour, resource selection, and Merriam connectivity. We simulated movement paths using hidden Markov movement models and step selection functions to estimate habitat use and connectivity for three landscape scenarios: reference conditions with no anthropogenic development, current conditions, and future conditions with a simulated expansion of towns and recreational trails. Our analysis used 20 years of grizzly bear ( Ursus arctos ) and gray wolf ( Canis lupus ) movement data collected in and around Banff National Park, Canada. Results Carnivores increased their speed of travel near towns and areas of high trail and road density, presumably to avoid encounters with people. They exhibited stronger avoidance of anthropogenic development when foraging and resting compared to travelling and during the day compared to night. Wolves exhibited stronger avoidance of anthropogenic development than grizzly bears. Current development reduced the amount of high-quality habitat between two mountain towns by more than 35%. Habitat degradation constrained movement routes around towns and was most pronounced for foraging and resting behaviour. Current anthropogenic development reduced connectivity from reference conditions an average of 85%. Habitat quality and connectivity further declined under a future development scenario. Conclusions Our results highlight the cumulative effects of anthropogenic development on carnivore movement behaviour, habitat use, and connectivity. Our strong behaviour-specific responses to human activity suggest that conservation initiatives should consider how proposed developments and restoration actions would affect where animals travel and how they use the landscape. 
    more » « less