skip to main content


Search for: All records

Award ID contains: 2040022

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Animals are known to regulate the composition of their cell membranes to maintain key biophysical properties in response to changes in temperature. For deep-sea marine organisms, high hydrostatic pressure represents an additional, yet much more poorly understood, perturbant of cell membrane structure. Previous studies in fish and marine microbes have reported correlations with temperature and depth of membrane-fluidizing lipid components, such as polyunsaturated fatty acids. Because little has been done to isolate the separate effects of temperature and pressure on the lipid pool, it is still not understood whether these two environmental factors elicit independent or overlapping biochemical adaptive responses. Here, we use the taxonomic and habitat diversity of the phylum Ctenophora to test whether distinct low-temperature and high-pressure signatures can be detected in fatty acid profiles. We measured the fatty acid composition of 105 individual ctenophores, representing 21 species, from deep and shallow Arctic, temperate, and tropical sampling locales (sea surface temperature, −2° to 28°C). In tropical and temperate regions, remotely operated submersibles (ROVs) enabled sampling down to 4000 m. We found that among specimens with body temperatures 7.5°C or colder, depth predicted fatty acid unsaturation levels. In contrast, in the upper 200 m of the water column, temperature predicted fatty acid chain lengths. Taken together, our findings suggest that lipid metabolism may be specialized with respect to multiple physical variables in diverse marine environments. Largely distinct modes of adaptation to depth and cold imply that polar marine invertebrates may not find a ready refugium from climate change in the deep. 
    more » « less