skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2040073

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Oyashio Extension (OE) frontal zone in the northwest Pacific Ocean is associated with strong gradients of sea surface temperature (SST) and salinity. The OE front enhances baroclinicity and anchors the storm tracks; changes in its position and strength may impact atmospheric variability. North–south shifts in the OE front are often defined using the leading principal component for the latitude of the absolute maximum SST gradient in the northwest Pacific (145°–170°E), the so-called Oyashio Extension index (OEI). We show that the OEI is sensitive to the choice of SST dataset used in its construction, and that the significance of regressions of atmospheric fields onto the OEI also depends on the choice of SST datasets, leading to nonrobust results. This sensitivity primarily stems from the longitudinal domain used to define the OEI including a region with parallel or indistinct frontal zones in its central section (155°–164°E), leading to divergent results across datasets. We introduce a new index that considers the extent to which the SST front across this central section departs from climatology, the frontal disturbance index (FDI). For the months considered and over short time lags, the FDI produces more consistent results on air–sea interactions and associated high-frequency storm-track metrics than the conventional OEI, with a southward shift of the storm track for a more positive FDI. The FDI appears to be related to oceanic mesoscale eddy activity in the central OE region. There are significant asymmetric associations between the FDI and storm-track metrics dependent on the sign of the FDI. Significance StatementIn this study, we aim to understand how the choice of dataset may influence the interpretation of interactions between the ocean and the overlying atmosphere near sea surface temperature (SST) fronts. We find that using different SST datasets affects the results, due to slight differences in the representation of the location of the maximum SST gradient. To understand this, we develop a new index which relates to the degree of disturbance of the SST front. The new index produces regression results that are more consistent across the different datasets. We also identify some possible links between the frontal disturbance and the presence of ocean eddies. We advise that the sensitivity to dataset choice is given due consideration in regions near SST fronts. 
    more » « less
  2. Abstract A regime shift in the formation mechanisms of the North Pacific subtropical mode water (NPSTMW) and its causes were investigated using a 2,000‐year‐long pre‐industrial control simulation of a fully coupled atmosphere‐ocean‐sea ice model. The volume budget analysis revealed that the air‐sea flux and ocean dynamics (OD) were the two primary driving mechanisms for NPSTMW formation, but their relative importance has periodically alternated in multidecadal timescales of approximately 50–70 years. The regime shift of the NPSTMW formation was closely related to the meridional (50 years) and zonal (70 years) movements of the Aleutian Low (AL). When AL shifted to the south or east, it induces the sea surface height anomalies propagating westward from the central North Pacific and preconditions the NPSTMW formation, thus the OD become relatively more important. 
    more » « less
  3. Abstract. Although conventionally attributed to dry dynamics, increasing evidence points to a key role of moist dynamics in the formation and maintenance of blocking events. The source of moisture crucial for these processes, however, remains elusive. In this study, we identify the moisture sources responsible for latent heating associated with the wintertime Euro-Atlantic blocking events detected over 31 years (1979–2010). To this end, we track atmospheric particles backward in time from the blocking centres for a period of 10 d using an offline Lagrangian dispersion model applied to atmospheric reanalysis data. The analysis reveals that 28 %–55 % of particles gain heat and moisture from the ocean over the course of 10 d, with higher percentages for the lower altitudes from which particles are released. Via large-scale ascent, these moist particles transport low-potential-vorticity (PV) air of low-altitude, low-latitude origins into the upper troposphere, where the amplitude of blocking is the most prominent, in agreement with previous studies. The PV of these moist particles remains significantly lower compared to their dry counterparts throughout the course of 10 d, preferentially constituting blocking cores. Further analysis reveals that approximately two-thirds of the moist particles source their moisture locally from the Atlantic, while the remaining one-third of moist particles source it from the Pacific. There is also a small fraction of moist particles that take up moisture from both the Pacific and Atlantic basins, which undergo a large-scale uplift over the Atlantic using moisture picked up over both basins. The Gulf Stream and Kuroshio and their extensions as well as the eastern Pacific northeast of Hawaii not only provide heat and moisture to moist particles but also act as “springboards” for their large-scale, cross-isentropic ascent, where its extent strongly depends on the humidity content at the time of the ascent. While the particles of Atlantic origin swiftly ascend just before their arrival at blocking, those of Pacific origin begin their ascent a few days earlier, after which they carry low-PV air in the upper troposphere while undergoing radiative cooling just as dry particles. A previous study identified a blocking maintenance mechanism, whereby low-PV air is selectively absorbed into blocking systems to prolong blocking lifetime. As they used an isentropic trajectory analysis, this mechanism was regarded as a dry process. We found that these moist particles that are fuelled over the Pacific can also act to maintain blocks in the same manner, revealing that what appears to be a blocking maintenance mechanism governed by dry dynamics alone can, in fact, be of moist origin. 
    more » « less