skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2040206

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper introduces reAnalyst, a framework designed to facilitate the study of reverse engineering (RE) practices through the semi-automated annotation of RE activities across various RE tools. By integrating tool-agnostic data collection of screenshots, keystrokes, active processes, and other types of data during RE experiments with semi-automated data analysis and generation of annotations, reAnalyst aims to overcome the limitations of traditional RE studies that rely heavily on manual data collection and subjective analysis. The framework enables more efficient data analysis, which will in turn allow researchers to explore the effectiveness of protection techniques and strategies used by reverse engineers more comprehensively and efficiently. Experimental evaluations validate the framework’s capability to identify RE activities from a diverse range of screenshots with varied complexities. Observations on past experiments with our framework as well as a survey among reverse engineers provide further evidence of the acceptability and practicality of our approach. 
    more » « less
    Free, publicly-accessible full text available April 30, 2026