- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Cooper, C (1)
-
Cooper, Clayton (1)
-
Gao, R (1)
-
Gao, Robert X. (1)
-
Guo, Y B (1)
-
Guo, Yuebin (1)
-
Hu, L (1)
-
Hu, Liwen (1)
-
Phan, H (1)
-
S. Guo, M. Agarwal (1)
-
Srinivasan, S (1)
-
Yuan, B (1)
-
Zhang, J (1)
-
Zhang, Jianjing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Prediction of surface topography in milling usually requires complex kinematics and dynamics modeling of the milling process, plus solving physical models of surface generation is a daunting task. This paper presents a multimodal data-driven machine learning (ML) method to predict milled surface topography. The proposed method predicts the height map of the surface topography by fusing process parameters and in-process acoustic information as model inputs. This method has been validated by comparing the predicted surface topography with the measured data.more » « less
-
Cooper, Clayton; Zhang, Jianjing; Hu, Liwen; Guo, Yuebin; Gao, Robert X. (, IEEE Transactions on Instrumentation and Measurement)
-
S. Guo, M. Agarwal (, Journal of manufacturing systems)Machine learning (ML) has shown to be an effective alternative to physical models for quality prediction and process optimization of metal additive manufacturing (AM). However, the inherent “black box” nature of ML techniques such as those represented by artificial neural networks has often presented a challenge to interpret ML outcomes in the framework of the complex thermodynamics that govern AM. While the practical benefits of ML provide an adequate justification, its utility as a reliable modeling tool is ultimately reliant on assured consistency with physical principles and model transparency. To facilitate the fundamental needs, physics-informed machine learning (PIML) has emerged as a hybrid machine learning paradigm that imbues ML models with physical domain knowledge such as thermomechanical laws and constraints. The distinguishing feature of PIML is the synergistic integration of data-driven methods that reflect system dynamics in real-time with the governing physics underlying AM. In this paper, the current state-of-the-art in metal AM is reviewed and opportunities for a paradigm shift to PIML are discussed, thereby identifying relevant future research directions.more » « less
An official website of the United States government
