skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2040702

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microresonator-based platforms withnonlinearities have the potential to perform frequency conversion at high efficiencies and ultralow powers with small footprints. The standard doctrine for achieving high conversion efficiency in cavity-based devices requires “perfect matching,” that is, zero phase mismatch while all relevant frequencies are precisely at a cavity resonance, which is difficult to achieve in integrated platforms due to fabrication errors and limited tunabilities. In this Letter, we show that the violation of perfect matching does not necessitate a reduction in conversion efficiency. On the contrary, in many cases, mismatches should be intentionally introduced to improve the efficiency or tunability of conversion. We identify the universal conditions for maximizing the efficiency of cavity-based frequency conversion and show a straightforward approach to fully compensate for parasitic processes such as thermorefractive and photorefractive effects that, typically, can limit the conversion efficiency. We also show the design criteria that make these high-efficiency states stable against nonlinearity-induced instabilities. 
    more » « less