skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2040716

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbonate minerals contain stable isotopes of carbon and oxygen with different masses whose abundances and bond arrangement are governed by thermodynamics. The clumped isotopic value Δiis a measure of the temperature-dependent preference of heavy C and O isotopes to clump, or bond with or near each other, rather than with light isotopes in the carbonate phase. Carbonate clumped isotope thermometry uses Δivalues measured by mass spectrometry (Δ47, Δ48) or laser spectroscopy (Δ638) to reconstruct mineral growth temperature in surface and subsurface environments independent of parent water isotopic composition. Two decades of analytical and theoretical development have produced a mature temperature proxy that can estimate carbonate formation temperatures from 0.5 to 1,100°C, with up to 1–2°C external precision (2 standard error of the mean). Alteration of primary environmental temperatures by fluid-mediated and solid-state reactions and/or Δivalues that reflect nonequilibrium isotopic fractionations reveal diagenetic history and/or mineralization processes. Carbonate clumped isotope thermometry has contributed significantly to geological and biological sciences, and it is poised to advance understanding of Earth's climate system, crustal processes, and growth environments of carbonate minerals. ▪ Clumped heavy isotopes in carbonate minerals record robust temperatures and fluid compositions of ancient Earth surface and subsurface environments. ▪ Mature analytical methods enable carbonate clumped Δ47, Δ48, and Δ638measurements to address diverse questions in geological and biological sciences. ▪ These methods are poised to advance marine and terrestrial paleoenvironment and paleoclimate, tectonics, deformation, hydrothermal, and mineralization studies. 
    more » « less
  2. ABSTRACT Hot and cold spring travertine deposits record integrated histories reflecting changing hydrologic conditions, informing our understanding of the driving forces behind factors impacting local hydrology. We present results from a geologic and geochemical investigation of Cottonwood Travertine, located in Dixie Valley, NV, where it is unclear if the paleospring system that deposited the travertine was driven by deeply sourced hydrothermal fluids, or high fluid flow driven by wetter paleoclimate conditions. The temperature of the spring water that precipitated the Cottonwood Travertine has implications for the relative importance of hydrothermal versus climatic processes influencing the formation and cessation of this enigmatic deposit. We identified four groups of samples based on geologic setting, sample textures, and stable and clumped isotopic analysis: 1) calcite cemented upper gravels, 2) a mound area at the upper bench of the deposit, 3) samples from the flanks and from vuggy veins and fault zone cements from the base of the deposit, and 4) fibrous sub-travertine veins. The calcite-cemented gravels yielded δ18OC values as low as -18.4‰ (VPDB) and apparent TΔ47 of 52°C. The top mound of the deposit returned calcite δ18OC values between -12.8‰ and -11.7‰ (VPDB) and clumped isotope temperatures (TD47) of 24 – 32°C. Higher d13C and d18Oc values at the mound site are interpreted to reflect off gassing of CO2 and disequilibrium conditions. δ18OC and TD47 values from the slopes and base of the deposit are between -15.9‰ and -14.5‰ (VPDB) and around 20°C, respectively. Structurally, texturally, and isotopically (δ18OC = -29.4‰ (VPDB); TΔ47 = 93°C), the fibrous sub-travertine veins are more consistent with the local Jurassic host rock and probably do not reflect recent hot spring conditions. Our analysis suggests that, despite the impressive volume, Cottonwood Travertine formed from springs that were not particularly hot, and the deposit instead reflects vigorous warm spring activity in a wetter climactic regime rather than fluid flow from an extinct higher temperature hydrothermal system. 
    more » « less
  3. ABSTRACT Hot spring travertine and sinter deposits record discharge from hydrothermal systems through evolving hydrothermal, hydrologic, and tectonic regimes. The location and volume of the largest deposits may reflect persistent or particularly robust periods of hydrothermal flow. As part of a broader investigation into the chemical evolution of travertine deposits, we used unoccupied aerial vehicles (UAVs) coupled with high-precision GPS surveys to collect and assemble orthorectified photomosaics and high-resolution digital elevation models (DEMs) using structure-from-motion (SfM) software for eight sites in the northern Central Nevada Seismic Belt. These sites range from large, intrabasin travertine mounds to travertine and sinter deposits offset by Quaternary faults. Some highlights of the research made possible by the acquisition of these topographic datasets include: 1) geomorphic evidence that hydrothermal flow at Hyder Hot Springs has persisted since at least the last highstand of glacial Lake Dixie, 2) documenting the impact of hot spring sinter and hydrothermal alteration on the preservation and morphology of Quaternary fault scarp profiles, 3) mapping the extent of a large extinct travertine deposit in the Stillwater Range, and 4) constraints on the offset of hot spring deposits affected by Quaternary faulting at Kyle Hot Springs. Areas between 0.51 – 1.23 km^2 (126-303 acres) were easily acquired with less than half a day of surveying and flying, and models capable of producing orthorectified photomosaics and DEMs with average resolution of 2.5 cm/pixel and 9.7 cm/pixel, respectively, were built on a desktop computer with 1-10 days of processing time. In desert landscapes, the resolution of the resulting DEMs approaches that of bare earth LiDAR datasets at a fraction of the cost, with little to no special permitting in most cases, and with limited preplanning. The imagery and models described herein are freely available from the NSF-EAR-funded data facility OpenTopography (https://portal.opentopography.org/datasets) for use in commercial, academic, and educational applications with proper attribution. 
    more » « less