skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2041096

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background

    The COVID-19 pandemic has resulted in heightened levels of depression, anxiety, and other mental health issues due to sudden changes in daily life, such as economic stress, social isolation, and educational irregularity. Accurately assessing emotional and behavioral changes in response to the pandemic can be challenging, but it is essential to understand the evolving emotions, themes, and discussions surrounding the impact of COVID-19 on mental health.

    Objective

    This study aims to understand the evolving emotions and themes associated with the impact of COVID-19 on mental health support groups (eg, r/Depression and r/Anxiety) on Reddit (Reddit Inc) during the initial phase and after the peak of the pandemic using natural language processing techniques and statistical methods.

    Methods

    This study used data from the r/Depression and r/Anxiety Reddit communities, which consisted of posts contributed by 351,409 distinct users over a period spanning from 2019 to 2022. Topic modeling and Word2Vec embedding models were used to identify key terms associated with the targeted themes within the data set. A range of trend and thematic analysis techniques, including time-to-event analysis, heat map analysis, factor analysis, regression analysis, and k-means clustering analysis, were used to analyze the data.

    Results

    The time-to-event analysis revealed that the first 28 days following a major event could be considered a critical window for mental health concerns to become more prominent. The theme trend analysis revealed key themes such as economic stress, social stress, suicide, and substance use, with varying trends and impacts in each community. The factor analysis highlighted pandemic-related stress, economic concerns, and social factors as primary themes during the analyzed period. Regression analysis showed that economic stress consistently demonstrated the strongest association with the suicide theme, whereas the substance theme had a notable association in both data sets. Finally, the k-means clustering analysis showed that in r/Depression, the number of posts related to the “depression, anxiety, and medication” cluster decreased after 2020, whereas the “social relationships and friendship” cluster showed a steady decrease. In r/Anxiety, the “general anxiety and feelings of unease” cluster peaked in April 2020 and remained high, whereas the “physical symptoms of anxiety” cluster showed a slight increase.

    Conclusions

    This study sheds light on the impact of COVID-19 on mental health and the related themes discussed in 2 web-based communities during the pandemic. The results offer valuable insights for developing targeted interventions and policies to support individuals and communities in similar crises.

     
    more » « less
  2. The aim of this study was to assess the correlation of depression and anxiety with time spent at home among students at two universities—one urban and the other suburban—during the COVID-19 pandemic. Methods: Geolocation data from the smartphones of 124 participants were collected between February 2021 and May 2021. The level of depression was estimated by the PHQ-9 and PHQ-2 screening tools, and anxiety scores were estimated by the GAD-2 and GAD-7 screening tools. Results: 51% of participants in the PHQ-9 surveys indicated mild to severe depression. Participants spent on average 75% of their time at home during COVID. Time spent at home had a positive correlation with the mental health of urban students but a negative correlation with suburban students. The relation between the time at home with mental health was stronger among female participants than among male participants. Correlations between female depression, anxiety, and time at home were significant. Conclusions: Lockdown and distance learning contributed to the high levels of depression in university students. This research highlights the importance of time spent at home for mental health being during the pandemic and the importance of distinguishing between urban and suburban settings when formulating public health recommendations. Quality of time spent at home versus time spent outside differentiated the mental well-being of students located in different environments. Staying at home may be recommended for students without access to safe outdoor places as it is associated with lower levels of depression. 
    more » « less
  3. In this paper, we focus on preserving differential privacy (DP) in continual learning (CL), in which we train ML models to learn a sequence of new tasks while memorizing previous tasks. We first introduce a notion of continual adjacent databases to bound the sensitivity of any data record participating in the training process of CL. Based upon that, we develop a new DP-preserving algorithm for CL with a data sampling strategy to quantify the privacy risk of training data in the well-known Averaged Gradient Episodic Memory (A-GEM) approach by applying a moments accountant. Our algorithm provides formal guarantees of privacy for data records across tasks in CL. Preliminary theoretical analysis and evaluations show that our mechanism tightens the privacy loss while maintaining a promising model utility. 
    more » « less