skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2041401

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Global coral reef decline is largely driven by the breakdown of the coral-algal symbiosis during temperature stress. Corals can acclimatize to higher temperatures, but the cellular processes underlying this ability are poorly understood. We show that preconditioning-based improvements in thermal tolerance in Pocillopora acuta are accompanied by increases in host glutathione reductase (GR) activity and gene expression, which prevents DNA damage. A strong correlation between GR and BI-1 expressions in heat-stressed preconditioned corals and the presence of an antioxidant response element (ARE) in the GR promoter suggest BI-1 could regulate GR expression through Nrf2/ARE pathway. To fortify this link, we developed and GFP-validated an siRNA-mediated gene knockdown protocol and targeted the coral BI-1 gene. BI-1 knock-down specifically decreased GR expression and activity and increased oxidative DNA damage in heat-stressed preconditioned corals, showing that a BI-1-mediated, enhanced antioxidant response during acute heat stress is a key mechanism that prevents oxidative DNA damage after preconditioning. 
    more » « less