skip to main content


Search for: All records

Award ID contains: 2041413

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Protein’s magic function stems from its structure and various analytical techniques have been developed for it. Among proteins, membrane proteins are encoded 20–30% of genomes, whereas cause challenges for many analytical techniques. For example, lots of membrane proteins cannot form single crystal structure required by X-ray crystallography. As for NMR, the measurements were hindered by the low tumbling rates of membrane (i.e., phospholipid bilayers) where membrane proteins exist. In addition, membrane proteins usually lay parallel to the surface of phospholipid bilayers or form transmembrane structure. No matter parallel or perpendicular to phospholipid bilayers surface, membrane proteins form monolayer structure which is also difficult for X-ray and NMR to provide high-resolution results. Because NMR and X-ray crystallography are the two major analytical techniques to address protein’s structure, membrane proteins only contribute 2.4% to the solved protein databank. Surface FT-IR techniques can evaluate the conformation and orientation of membrane proteins by amide I band. Specifically for α-helical peptides/proteins, the orientation of the axis is critical to decide whether proteins form transmembrane structure. Notice that the traditional FT-IR can only provide “low-resolution” results.Here,13C isotope was introduced into the nonamyloid component (NAC), which spans residues 61–95 of α-synuclein (α-syn). Then, p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) was used to determine the orientation of a specific residue of α-helical NAC in monolayer. In general, pMAIRS is a novel technique to work complementary with X-ray and NMR to address membrane peptides/proteins structure with high resolution even in monolayer.

    Graphical abstract

     
    more » « less
  2. Abstract

    Galactose (Gal), lactose (Lac), and glucose (Glu) derived carbon dots (CDs) were evaluated for their utility as electrochemical sensing composites using acetaminophen (APAP) as a probe molecule. The goal of this work is to ascertain the role of graphene defects on electrochemical activity. Higher sp2‐to‐sp3hybridized carbon ratios (in parentheses) in the CDs correlated with higher sensitivity in the order according to measured Raman IG/IDintensities: GluCDs (6.53)−3APAP range at pH=7.0 was achieved, suitable for practical APAP toxicity monitoring. Defect density within the GalCDs provided the highest sensitivity.

     
    more » « less
  3. Free, publicly-accessible full text available November 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Free, publicly-accessible full text available June 1, 2024
  6. Free, publicly-accessible full text available May 1, 2024
  7. In this work, a NIR emitting dye, p-toluenesulfonate (IR-813) was explored as a model precursor to develop red emissive carbon dots (813-CD) with solvatochromic behavior with a red-shift observed with increasing solvent polarity. The 813-CDs produced had emission peaks at 610 and 698 nm, respectively, in water with blue shifts of emission as solvent polarity decreased. Subsequently, 813-CD was synthesized with increasing nitrogen content with polyethyleneimine (PEI) to elucidate the change in band gap energy. With increased nitrogen content, the CDs produced emissions as far as 776 nm. Additionally, a CD nanocomposite polyvinylpyrrolidone (PVP) film was synthesized to assess the phenomenon of solid-state fluorescence. Furthermore, the CDs were found to have electrochemical properties to be used as an additive doping agent for PVP film coatings.

     
    more » « less
  8. Enzyme linked immunosorbent assay (ELISA) is one of the most utilized serological methods to diagnose and identify etiologic agents of many infectious diseases and other physiologically important analytes. ELISA can be used either alone or adjunct to other diagnostic methods such as molecular arrays, and other serological techniques. Most ELISA assays utilize reagents that are proteinaceous in nature, which are not very stable and require cold-chain transport systems. Development of a desirable immunoassay requires stability of reagents used and its ability to be stored at room temperature without sacrificing the activity of the reagents or the protein of interest. Metal organic frameworks (MOFs) are a rapidly emerging and evolving class of porous polymeric materials used in a variety of biosensor applications. In this study, we introduce the use of MOFs to stabilize a universal reporter fusion protein, specifically, avidin-like protein (Tam-avidin2) and the small bioluminescent protein Gaussia luciferase (Gluc) forming the fusion reporter, tamavidin2-Gluc (TA2-Gluc). This fusion protein serves as a universal reporter for any assays that utilize biotin–avidin binding strategy. Using SARS-CoV2 S1 spike antigen as the model target antigen, we demonstrated that encapsulation of TA2-Gluc fusion protein using a nano-porous material, zeolitic imidazolate framework-8 (ZIF-8), allows us to store and preserve this reporter protein at room temperature for over 6 months and use it as a reporter for an ELISA assay. Our optimized assay was validated demonstrating a 0.26 μg mL −1 limit of detection, high reproducibility of assay over days, detection of spiked non-virulent SARS-COV2 pseudovirus in real sample matrix, and detection in real COVID-19 infected individuals. This result can lead to the utilization of our TA2-Gluc fusion protein reporter with other assays and potentially in diagnostic technologies in a point-of-care setting. 
    more » « less