Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            The rapid proliferation of complex information systems has been met by an ever-increasing quantity of exploits that can cause irreparable cyber breaches. To mitigate these cyber threats, academia and industry have placed a significant focus on proactively identifying and labeling exploits developed by the international hacker community. However, prevailing approaches for labeling exploits in hacker forums do not leverage metadata from exploit darknet markets or public exploit repositories to enhance labeling performance. In this study, we adopted the computational design science paradigm to develop a novel information technology artifact, the deep transfer learning exploit labeler (DTL-EL). DTL-EL incorporates a pre-initialization design, multi-layer deep transfer learning (DTL), and a self-attention mechanism to automatically label exploits in hacker forums. We rigorously evaluated the proposed DTL-EL against state-of-the-art non-DTL benchmark methods based in classical machine learning and deep learning. Results suggest that the proposed DTL-EL significantly outperforms benchmark methods based on accuracy, precision, recall, and F1-score. Our proposed DTL-EL framework provides important practical implications for key stakeholders such as cybersecurity managers, analysts, and educators.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available