skip to main content


Search for: All records

Award ID contains: 2041785

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Computational Thinking (CT) is a vital and multi-dimensional skill for all 21st Century Learners. In this study, we investigated the development of three aspects of CT: Self-Perception of Computational Ability, Modeling and Simulation, and Computational Problem Solving, as students engaged in collaborative game design and programming practices. This study contributes evidence for the development of two of these CT dimensions, Modeling and Simulation and Computational Problem Solving, through their engagement with the WL curriculum and platform. We found increases in students’ ability to understand machines and their processes, alongside an improved capacity to think algorithmically as they constructed models, debugged, and iterated through their designs. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Embodied cognition posits that human-environment interaction positively impacts thinking and learning, making it a valuable pedagogical tool. Technology in teaching and learning has seen tremendous maturation, such as the development of Intelligent Tutoring Systems (ITS). However, most ITS provide static learning experiences that do not incorporate embodiment, movement, and interaction with the space around the learner. This paper examines the results of using an embodied tutoring system across three case studies with different dimensions of embodiment. In all cases, we found trends highlighting how embodied tutoring systems can support learning. We also discuss different ways to incorporate embodiment into future research on ITS. 
    more » « less
  3. Frasson, C. (Ed.)
    Embodied cognition posits that human-environment interac- tion positively impacts thinking and learning, making it a valuable ped- agogical tool. Technology in teaching and learning has seen tremendous maturation, such as the development of Intelligent Tutoring Systems (ITS). However, most ITS provide static learning experiences that do not incorporate embodiment, movement, and interaction with the space around the learner. This paper examines the results of using an embod- ied tutoring system across three case studies with different dimensions of embodiment. In all cases, we found trends highlighting how embodied tutoring systems can support learning. We also discuss different ways to incorporate embodiment into future research on ITS. 
    more » « less
  4. This emerging technology report introduces the WearableLearning (WL) platform as a tool to exercise computational thinking and STEM learning for 5-12th grade students through mobile technology-augmented active game play and game creation. Freely available at WearableLearning.org, it allows students and teachers to play, create, debug, and manage multiplayer, active games. To date, WearableLearning has been used in schools and afterschool programs by roughly 500 students and 25 teachers to create games covering STEM curricular content. WearableLearning enables the creation of physically active and social games, while offering possibilities for research on computational thinking, embodied cognition, collaborative learning, game-based learning, and practical applications of technology in STEM classrooms. 
    more » « less
  5. null (Ed.)
    We present the Wearable Learning Cloud Platform (WLCP), a web-based platform that supports embodied educational game creation, play, and math learning in real classrooms. WLCP is a novel learning technology that supports students’ exploratory and active movement within learning environments, blending hands-on activities and collaborative games within classroom culture. We present preliminary findings from several experiments that show that a variety of embodied games created via the WLCP helps students learn mathematics in real K-12 school settings and afterschool programs. 
    more » « less
  6. null (Ed.)
    The Game Play and Design Framework is a project-based instructional method to engage teachers and students with mathematics content by utilizing technology as a vehicle for game play and creation. In the authors’ prior work, they created a technology tool and game editing platform, the Wearable Learning Cloud Platform (WLCP), which enables teachers and students to play, create, and experience technology-augmented learning activities. This paper describes a 14-week Game Play and Design professional development program in which middle school teachers played, designed, tested, and implemented mathematics games in the classroom with their own students. Examples are included of teacher-created games, feedback from the students’ experience designing games, and evidence of student learning gains from playing teacher-created games. This work provides a pedagogical approach for educators and students that utilizes the benefits of mobile technologies and collaborative learning through games to develop students’ higher-level thinking in STEM classrooms. 
    more » « less