skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2041895

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biodiversity hotspots in Earth’s mountain ranges suggest a strong connection between topographic development and biological processes. However, it remains unclear whether high biodiversity in mountain ranges is an evolutionary response to the rate of relief generation during mountain building. Focusing on small mammals, such as rodents, we used coupled landscape-biological simulations to show that biodiversity increases with the magnitude and rate of tectonic uplift. This relationship, visible in depositional lowlands over millions of years, underscores the considerable role of mountain building in shaping past and present terrestrial biodiversity. Our results provide insights into the influence of topographic changes on evolutionary processes, offering a potential link between mountain formation and paleodiversity records. 
    more » « less
    Free, publicly-accessible full text available March 21, 2026
  2. Landscape properties have a profound influence on the diversity and distribution of biota, with present-day biodiversity hot spots occurring in topographically complex regions globally. Complex topography is created by tectonic processes and further shaped by interactions between climate and land-surface processes. These processes enrich diversity at the regional scale by promoting speciation and accommodating increased species richness along strong environmental gradients. Synthesis of the mammalian fossil record and a geophysical model of topographic evolution of the Basin and Range Province in western North America enable us to directly quantify relationships between mammal diversity and landscape dynamics over the past 30 million years. We analyze the covariation between tectonic history (extensional strain rates, paleotopography, and ruggedness), global temperature, and diversity dynamics. Mammal species richness and turnover exhibit stronger responses to rates of change in landscape properties than to the specific properties themselves, with peaks in diversity coinciding with high tectonic strain rates and large changes in elevation across spatial scales. 
    more » « less