skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2043447

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Orbital precession has been linked to glacial cycles and the atmospheric carbon dioxide (CO2) concentration, yet the direct impact of precession on the carbon cycle is not well understood. We analyze output from an Earth system model configured under different orbital parameters to isolate the impact of precession on air‐sea CO2flux in the Southern Ocean—a component of the global carbon cycle that is thought to play a key role on past atmospheric CO2variations. Here, we demonstrate that periods of high precession are coincident with anomalous CO2outgassing from the Southern Ocean. Under high precession, we find a poleward shift in the southern westerly winds, enhanced Southern Ocean meridional overturning, and an increase in the surface ocean partial pressure of CO2along the core of the Antarctic Circumpolar Current. These results suggest that orbital precession may have played an important role in driving changes in atmospheric CO2
    more » « less
  2. El Niño events, the warm phase of the El Niño–Southern Oscillation (ENSO) phenomenon, amplify climate variability throughout the world. Uncertain climate model predictions limit our ability to assess whether these climatic events could become more extreme under anthropogenic greenhouse warming. Palaeoclimate records provide estimates of past changes, but it is unclear if they can constrain mechanisms underlying future predictions. Here we uncover a mechanism using numerical simulations that drives consistent changes in response to past and future forcings, allowing model validation against palaeoclimate data. The simulated mechanism is consistent with the dynamics of observed extreme El Niño events, which develop when western Pacific warm pool waters expand rapidly eastwards because of strongly coupled ocean currents and winds. These coupled interactions weaken under glacial conditions because of a deeper mixed layer driven by a stronger Walker circulation. The resulting decrease in ENSO variability and extreme El Niño occurrence is supported by a series of tropical Pacific palaeoceanographic records showing reduced glacial temperature variability within key ENSO-sensitive oceanic regions, including new data from the central equatorial Pacific. The model–data agreement on past variability, together with the consistent mechanism across climatic states, supports the prediction of a shallower mixed layer and weaker Walker circulation driving more frequent extreme El Niño genesis under greenhouse warming. 
    more » « less
  3. Presently, the Indian Ocean (IO) resides in a climate state that prevents strong year-to-year climate variations. This may change under greenhouse warming, but the mechanisms remain uncertain, thus limiting our ability to predict future changes in climate extremes. Using climate model simulations, we uncover the emergence of a mode of climate variability capable of generating unprecedented sea surface temperature and rainfall fluctuations across the IO. This mode, which is inhibited under present-day conditions, becomes active in climate states with a shallow thermocline and vigorous upwelling, consistent with the predictions of continued greenhouse warming. These predictions are supported by modeling and proxy evidence of an active mode during glacial intervals that favored such a state. Because of its impact on hydrological variability, the emergence of such a mode would become a first-order source of climate-related risks for the densely populated IO rim. 
    more » « less