Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2024
-
Free, publicly-accessible full text available December 1, 2023
-
Free, publicly-accessible full text available September 1, 2023
-
Purpose The purpose of this paper is to develop, apply and validate a mesh-free graph theory–based approach for rapid thermal modeling of the directed energy deposition (DED) additive manufacturing (AM) process. Design/methodology/approach In this study, the authors develop a novel mesh-free graph theory–based approach to predict the thermal history of the DED process. Subsequently, the authors validated the graph theory predicted temperature trends using experimental temperature data for DED of titanium alloy parts (Ti-6Al-4V). Temperature trends were tracked by embedding thermocouples in the substrate. The DED process was simulated using the graph theory approach, and the thermal history predictions were validated based on the data from the thermocouples. Findings The temperature trends predicted by the graph theory approach have mean absolute percentage error of approximately 11% and root mean square error of 23°C when compared to the experimental data. Moreover, the graph theory simulation was obtained within 4 min using desktop computing resources, which is less than the build time of 25 min. By comparison, a finite element–based model required 136 min to converge to similar level of error. Research limitations/implications This study uses data from fixed thermocouples when printing thin-wall DED parts. In the future, the authors will incorporate infrared thermal cameramore »Free, publicly-accessible full text available August 12, 2023
-
The objective of this work is to predict a type of thermal-induced process failure called recoater crash that occurs frequently during laser powder bed fusion (LPBF) additive manufacturing. Rapid and accurate thermomechanical simulations are valuable for LPBF practitioners to identify and correct potential issues in the part design and processing conditions that may cause recoater crashes. In this work, to predict the likelihood of a recoater crash (recoater contact or impact) we develop and apply a computationally efficient thermomechanical modeling approach based on graph theory. The accuracy and computational efficiency of the approach is demonstrated by comparison with both non-proprietary finite element analysis (Abaqus), and a proprietary LPBF simulation software (Autodesk Netfabb). Based on both numerical (verification) and experimental (validation) studies, the proposed approach is found to be 5 to 6 times faster than the non-proprietary finite element modeling and has the same order of computational time as a commercial simulation software (Netfabb) without sacrificing prediction accuracy.Free, publicly-accessible full text available August 5, 2023
-
Free, publicly-accessible full text available June 1, 2023