skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2044794

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. More than 90% of the world’s hydrogen (H2) is produced from fossil fuel sources, which requires energy-intensive separation and purification to produce high-purity H2fuel and to capture the carbon dioxide (CO2) by-product. While membranes can decarbonize H2/CO2separation, their moderate H2/CO2selectivity requires secondary H2purification by pressure swing adsorption. Here, we report hyperselective carbon molecular sieve hollow fiber membranes showing H2/CO2selectivity exceeding 7000 under mixture permeation at 150°C, which is almost 30 times higher than the most selective nonmetallic membrane reported in the literature. The membrane is able to maintain an ultrahigh H2/CO2selectivity over 1400 under mixture permeation at 400°C. Pore structure characterization suggests that highly refined ultramicropores are responsible for effectively discriminating the closely sized H2and CO2molecules in the hyperselective carbon molecular sieve membrane. Modeling shows that the unprecedented H2/CO2selectivity will potentially allow one-step enrichment of fuel-grade H2from shifted syngas for decarbonized H2production. 
    more » « less
    Free, publicly-accessible full text available June 4, 2026