skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2044806

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Speleothems are mineral deposits capable of recording detrital and/or chemical remanent magnetization at annual timescales. They can offer high‐resolution paleomagnetic records of short‐term variations in Earth's magnetic field, crucial for understanding the evolution of the dynamo. Owing to limitations on the magnetic moment sensitivity of commercial cryogenic rock magnetometers (∼10−11 Am2), paleomagnetic studies of speleothems have been limited to samples with volumes of several hundreds of mm3, averaging tens to hundreds of years of magnetic variation. Nonetheless, smaller samples (∼1–10 mm3) can be measured using superconducting quantum interference device (SQUID) microscopy, with a sensitivity better than ∼10−15 Am2. To determine the application of SQUID microscopy for obtaining robust high‐resolution records from small‐volume speleothem samples, we analyzed three different stalagmites collected from Lapa dos Morcegos Cave (Portugal), Pau d'Alho Cave (Brazil), and Crevice Cave (United States). These stalagmites are representative of a range of magnetic properties and have been previously studied with conventional rock magnetometers. We show that by using SQUID microscopy we can achieve a five‐fold improvement in temporal resolution for samples with higher abundances of magnetic carriers (e.g., Pau d'Alho Cave and Lapa dos Morcegos Cave). In contrast, speleothems with low abundances of magnetic carriers (e.g., Crevice Cave) do not benefit from higher resolution analysis and are best analyzed using conventional rock magnetometers. Overall, by targeting speleothem samples with high concentrations of magnetic carriers we can increase the temporal resolution of magnetic records, setting the stage for resolving geomagnetic variations at short time scales. 
    more » « less
  2. Abstract Recent advances in magnetic microscopy have enabled studies of geological samples whose weak and spatially nonuniform magnetizations were previously inaccessible to standard magnetometry techniques. A quantity of central importance is the net magnetic moment, which reflects the mean direction and the intensity of the magnetization states of numerous ferromagnetic crystals within a certain volume. The planar arrangement of typical magnetic microscopy measurements, which originates from measuring the field immediately above the polished surface of a sample to maximize sensitivity and spatial resolution, makes estimating net moments considerably more challenging than with spherically distributed data. In particular, spatially extended and nonuniform magnetization distributions often cannot be adequately approximated by a single magnetic dipole. To address this limitation, we developed a multipole fitting technique that can accurately estimate net moment using spherical harmonic multipole expansions computed from planar data. Given that the optimal location for the origin of such expansions is unknown beforehand and generally unconstrained, regularization of this inverse problem is critical for obtaining accurate moment estimates from noisy experimental magnetic data. We characterized the performance of the technique using synthetic sources under different conditions (noiseless data, data corrupted with simulated white noise, and data corrupted with measured instrument noise). We then validated and demonstrated the technique using superconducting quantum interference device microscopy measurements of impact melt spherules from Lonar crater, India and dusty olivine chondrules from the CO chondrite meteorite Dominion Range 08006. 
    more » « less