skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2044871

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tringe, Susannah Green (Ed.)
    ABSTRACT The evolution of oxygenic photosynthesis in the Cyanobacteria was one of the most transformative events in Earth history, eventually leading to the oxygenation of Earth’s atmosphere. However, it is difficult to understand how the earliest Cyanobacteria functioned or evolved on early Earth in part because we do not understand their ecology, including the environments in which they lived. Here, we use a cutting-edge bioinformatics tool to survey nearly 500,000 metagenomes for relatives of the taxa that likely bookended the evolution of oxygenic photosynthesis to identify the modern environments in which these organisms live. Ancestral state reconstruction suggests that the common ancestors of these organisms lived in terrestrial (soil and/or freshwater) environments. This restricted distribution may have increased the lag between the evolution of oxygenic photosynthesis and the oxygenation of Earth’s atmosphere.IMPORTANCECyanobacteria generate oxygen as part of their metabolism and are responsible for the rise of oxygen in Earth’s atmosphere over two billion years ago. However, we do not know how long this process may have taken. To help constrain how long this process would have taken, it is necessary to understand where the earliest Cyanobacteria may have lived. Here, we use a cutting-edge bioinformatics tool called branch water to examine the environments where modern Cyanobacteria and their relatives live to constrain those inhabited by the earliest Cyanobacteria. We find that these species likely lived in non-marine environments. This indicates that the rise of oxygen may have taken longer than previously believed. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026
  2. Pisani, Davide (Ed.)
    Abstract Molecular studies of animal regeneration typically focus on conserved genes and signaling pathways that underlie morphogenesis. To date, a holistic analysis of gene expression across animals has not been attempted, as it presents a suite of problems related to differences in experimental design and gene homology. By combining orthology analyses with a novel statistical method for testing gene enrichment across large data sets, we are able to test whether tissue regeneration across animals shares transcriptional regulation. We applied this method to a meta-analysis of six publicly available RNA-Seq data sets from diverse examples of animal regeneration. We recovered 160 conserved orthologous gene clusters, which are enriched in structural genes as opposed to those regulating morphogenesis. A breakdown of gene presence/absence provides limited support for the conservation of pathways typically implicated in regeneration, such as Wnt signaling and cell pluripotency pathways. Such pathways are only conserved if we permit large amounts of paralog switching through evolution. Overall, our analysis does not support the hypothesis that a shared set of ancestral genes underlie regeneration mechanisms in animals. After applying the same method to heat shock studies and getting similar results, we raise broader questions about the ability of comparative RNA-Seq to reveal conserved gene pathways across deep evolutionary relationships. 
    more » « less
  3. Abstract Cnidarians—the phylum including sea anemones, corals, jellyfish, and hydroids—are one of the oldest groups of predatory animals. Nearly all cnidarians are carnivores that use stinging cells called cnidocytes to ensnare and/or envenom their prey. However, there is considerable diversity in cnidocyte form and function. Tracing the evolutionary history of cnidocytes may therefore provide a proxy for early animal feeding strategies. In this study, we generated a time‐calibrated molecular clock of cnidarians and performed ancestral state reconstruction on 12 cnidocyte types to test the hypothesis that the original cnidocyte was involved in prey capture. We conclude that the first cnidarians had only the simplest and least specialized cnidocyte type (the isorhiza) which was just as likely to be used for adhesion and/or defense as the capture of prey. A rapid diversification of specialized cnidocytes occurred through the Ediacaran (~654–574 million years ago), with major subgroups developing unique sets of cnidocytes to match their distinct feeding styles. These results are robust to changes in the molecular clock model, and are consistent with growing evidence for an Ediacaran diversification of animals. Our work also provides insight into the evolution of this complex cell type, suggesting that convergence of forms is rare, with the mastigophore being an interesting counterexample. 
    more » « less
  4. Abstract Fossilized lipids offer a rare glimpse into ancient ecosystems. 2-Methylhopanes in sedimentary rocks were once used to infer the importance of cyanobacteria as primary producers throughout geological history. However, the discovery of hopanoid C-2 methyltransferase (HpnP) in Alphaproteobacteria led to the downfall of this molecular proxy. In the present study, we re-examined the distribution of HpnP in a new phylogenetic framework including recently proposed candidate phyla and re-interpreted a revised geological record of 2-methylhopanes based on contamination-free samples. We show that HpnP was probably present in the last common ancestor of cyanobacteria, while the gene appeared in Alphaproteobacteria only around 750 million years ago (Ma). A subsequent rise of sedimentary 2-methylhopanes around 600 Ma probably reflects the expansion of Alphaproteobacteria that coincided with the rise of eukaryotic algae—possibly connected by algal dependency on microbially produced vitamin B12. Our findings re-establish 2-methylhopanes as cyanobacterial biomarkers before 750 Ma and thus as a potential tool to measure the importance of oxygenic cyanobacteria as primary producers on early Earth. Our study illustrates how genetics can improve the diagnostic value of biomarkers and refine the reconstruction of early ecosystems. 
    more » « less
  5. Abstract Steranes preserved in sedimentary rocks serve as molecular fossils, which are thought to record the expansion of eukaryote life through the Neoproterozoic Era ( ~ 1000-541 Ma). Scientists hypothesize that ancient C27steranes originated from cholesterol, the major sterol produced by living red algae and animals. Similarly, C28and C29steranes are thought to be derived from the sterols of prehistoric fungi, green algae, and other microbial eukaryotes. However, recent work on annelid worms–an advanced group of eumetazoan animals–shows that they are also capable of producing C28and C29sterols. In this paper, we explore the evolutionary history of the24-C sterol methyltransferase(smt) gene in animals, which is required to make C28+sterols. We find evidence that thesmtgene was vertically inherited through animals, suggesting early eumetazoans were capable of C28+sterol synthesis. Our molecular clock of the animalsmtgene demonstrates that its diversification coincides with the rise of C28and C29steranes in the Neoproterozoic. This study supports the hypothesis that early eumetazoans were capable of making C28+sterols and that many animal lineages independently abandoned its biosynthesis around the end-Neoproterozoic, coinciding with the rise of abundant eukaryotic prey. 
    more » « less
  6. The first compilations of Proterozoic eukaryote diversity, published in the 1980s showed a dramatic peak in the Tonian Period (1000–720 Ma), interpreted as the initial radiation of eukaryotes in the marine realm. Over the decades, new discoveries filled in the older part of the record and the peak diminished, but the idea of a Tonian radiation of eukaryotes has remained strong, and is now widely accepted as fact. We present a new diversity compilation based on 181 species and 713 species occurrences from 145 formations ranging in age from 1890 Ma to 720 Ma and find a significant increase in diversity in the Tonian. However, we also find that the number of eukaryotic species through time is highly correlated with the number of formations in our dataset (i.e. eukaryote-bearing formations) through time. This correlation is robust to interpretations of eukaryote affinity, bin size, and bin boundaries. We also find that within-assemblage diversity—a measure thought to circumvent sampling bias—is related to the number of eukaryote-bearing formations through time. Biomarkers show a similar pattern to body fossils, where the rise of eukaryotic biosignatures correlates with increased sampling. We find no evidence that the proportion of eukaryote-bearing versus all fossiliferous formations changed through the Proterozoic, as might be expected if the correlation reflected an increase in eukaryote diversity driving an increase in the number of eukaryote-bearing formations. Although the correlation could reflect a common cause such as changes in sea level driving both diversification and an increase in sedimentary rock volume, we favor the explanation that the pattern of early eukaryote diversity is driven by variations in paleontological sampling. 
    more » « less
    Free, publicly-accessible full text available March 31, 2026