skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2044972

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available January 31, 2026
  3. This study explores the effect of heat treatment on the microstructural characteristics and corrosion resistance of 316L stainless steels (SSs) produced via laser powder bed fusion (L-PBF), focusing on anisotropic corrosion behavior—a relatively less explored phenomenon in LPBF 316L SSs. By systematically analyzing the effects of varying heat treatment temperatures (500 °C, 750 °C, and 1000 °C), this work uncovers critical correlations between microstructural evolution and corrosion properties. The findings include the identification of anisotropic corrosion resistance between horizontal (XY) and vertical (XZ) planes, with the vertical plane demonstrating higher pitting and repassivation potentials but greater post-repassivation current densities. Furthermore, this study highlights reductions in grain size, dislocation density, and melt pool boundaries with increasing heat treatment temperatures, which collectively diminishes corrosion resistance. These insights advance the understanding of processing–structure–property relationships in additively manufactured metals, providing practical guidelines for optimizing thermal post-processing to enhance material performance in corrosive environments. 
    more » « less
    Free, publicly-accessible full text available January 4, 2026