Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we first study a mapping problem between indefinite hyperbolic spaces by employing the work established earlier by the authors. In particular, we generalize certain theorems proved by Baouendi-Ebenfelt-Huang [Amer. J. Math. 133 (2011), pp. 1633–1661] and Ng [Michigan Math. J. 62 (2013), pp. 769–777; Int. Math. Res. Not. IMRN 2 (2015), pp. 291–324]. Then we use these results to prove a rigidity result for proper holomorphic mappings between type I classical domains, which confirms a conjecture formulated by Chan [Int. Math. Res. Not., doi.org/10.1093/imrn/rnaa373] after the work of Zaitsev-Kim [Math. Ann. 362 (2015), pp. 639-677], Kim [ Proper holomorphic maps between bounded symmetric domains , Springer, Tokyo, 2015, pp. 207–219] and himself.more » « less
-
Abstract The first part of the paper studies the boundary behavior of holomorphic isometric mappings F = ( F 1 , … , F m ) {F=(F_{1},\dots,F_{m})} from the complex unit ball 𝔹 n {\mathbb{B}^{n}} , n ≥ 2 {n\geq 2} , to a bounded symmetric domain Ω = Ω 1 × ⋯ × Ω m {\Omega=\Omega_{1}\times\cdots\times\Omega_{m}} up to constant conformal factors, where Ω i ′ {\Omega_{i}^{\prime}} s are irreducible factors of Ω. We prove every non-constant component F i {F_{i}} must map generic boundary points of 𝔹 n {\mathbb{B}^{n}} to the boundary of Ω i {\Omega_{i}} . In the second part of the paper, we establish a rigidity result for local holomorphic isometric maps from the unit ball to aproduct of unit balls and Lie balls.more » « less