skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2045220

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To create 3D arrangements of multiple materials in complex geometries, recent work within our lab has pursued the efficient and accurate modeling of nanoparticles and the assembly of micro- and nanostructures using optical tweezers. 
    more » « less
    Free, publicly-accessible full text available February 18, 2026
  2. The recent comment on our previously published article questioned the novelty and computational efficiency of our work. Here we respond by restating the novelty and scientific value of our work as well as showing why the specific alternative methods stated in the comment are unlikely to outperform the methods we compare for metasurface applications involving high refractive index particles near high refractive index substrates. 
    more » « less
  3. Metasurface design tends to be tedious and time-consuming based on sweeping geometric parameters. Common numerical simulation techniques are slow for large areas, ultra-fine grids, and/or three-dimensional simulations. Simulation time can be reduced by combining the principle of the discrete dipole approximation (DDA) with analytical solutions for light scattered by a dipole near a flat surface. The DDA has rarely been used in metasurface design, and comprehensive benchmarking comparisons are lacking. Here, we compare the accuracy and speed of three DDA methods—substrate discretization, two-dimensional Cartesian Green’s functions, and one-dimensional (1D) cylindrical Green’s functions—against the finite difference time domain (FDTD) method. We find that the 1D cylindrical approach performs best. For example, the s-polarized field scattered from a silica-substrate-supported 600 × 180 × 60 nm gold elliptic nanocylinder discretized into 642 dipoles is computed with 0.78 % pattern error and 6.54 % net power error within 294 s, which is 6 times faster than FDTD. Our 1D cylindrical approach takes advantage of parallel processing and also gives transmitted field solutions, which, to the best of our knowledge, is not found in existing tools. We also examine the differences among four polarizability models: Clausius–Mossotti, radiation reaction, lattice dispersion relation, and digitized Green’s function, finding that the radiation reaction dipole model performs best in terms of pattern error, while the digitized Green’s function has the lowest power error. 
    more » « less